您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 福建各地中考数学压轴题(含答案)
莆田25.(12分)已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:2222PAPCPBPD,请你探究:当点P分别在图(2)、图(3)中的位置时,2222PAPBPCPD、、和又有怎样的数量关系?请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为____________________________________.对图(3)的探究结论为_____________________________________.证明:如图(2)26.(14分)如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.(1)求抛物线的解析式.(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线2yaxbxc的对称轴为2bxa)福州课改21.(满分12分)如图9,等边ABC边长为4,E是边BC上动点,ACEH于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使EBPE。设)20(xxEC。(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求EFPQ的面积(用含x的代数式表示);(3)当(2)中的EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时EFPQ四条边交点的总个数,求相应的r的取值范围。22.(满分14分)已知直线l:y=-x+m(m≠0)交x轴、y轴于A、B两点,点C、M分别在线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M旋转180°,得到△FEM,则点E在y轴上,点F在直线l上;取线段EO中点N,将ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点.记:过点F的双曲线为1C,过点M且以B为顶点的抛物线为2C,过点P且以M为顶点的抛物线为3C.(1)如图10,当m=6时,①直接写出点M、F的坐标,②求1C、2C的函数解析式;(2)当m发生变化时,①在1C的每一支上,y随x的增大如何变化?请说明理由。②若2C、3C中的y都随着x的增大而减小,写出x的取值范围。图10漳州26.(满分14分)如图1,已知:抛物线212yxbxc与x轴交于AB、两点,与y轴交于点C,经过BC、两点的直线是122yx,连结AC.(1)BC、两点坐标分别为B(_____,_____)、C(_____,_____),抛物线的函数关系式为______________;(2)判断ABC△的形状,并说明理由;(3)若ABC△内部能否截出面积最大的矩形DEFC(顶点DEF、、、G在ABC△各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.[抛物线2yaxbxc的顶点坐标是24,24bacbaa]CAOBxyCAOBxy图1图2(备用)(第26题)厦门三明22.(本题满分12分)已知:矩形ABCD中AD>AB,O是对角线的交点,过O任作一直线分别交BC、AD于点M、N(如图①).(1)求证:BM=DN;(2)如图②,四边形AMNE是由四边形CMND沿MN翻折得到的,连接CN,求证:四边形AMCN是菱形;(3)在(2)的条件下,若△CDN的面积与△CMN的面积比为1︰3,求MNDN的值.23.(本题满分14分)如图,在平面直角坐标系xOy中,抛物线212yxbxc与x轴交于A(1,0)、B(5,0)两点.(1)求抛物线的解析式和顶点C的坐标;(4分)(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为(090≤).①当等于多少度时,△CPQ是等腰三角形?(5分)②设BPtAQs,,求s与t之间的函数关系式.(5分)莆田25:结论均是PA2+PC2=PB2+PD2(图22分,图31分)证明:如图2过点P作MN⊥AD于点M,交BC于点N,因为AD∥BC,MN⊥AD,所以MN⊥BC在Rt△AMP中,PA2=PM2+MA2在Rt△BNP中,PB2=PN2+BN2在Rt△DMP中,PD2=DM2+PM2在Rt△CNP中,PC2=PN2+NC2所以PA2+PC2=PM2+MA2+PN2+NC2PB2+PD2=PM2+DM2+BN2+PN2因为MN⊥AD,MN⊥NC,DC⊥BC,所以四边形MNCD是矩形所以MD=NC,同理AM=BN,所以PM2+MA2+PN2+NC2=PM2+DM2+BN2+PN2即PA2+PC2=PB2+PD226(1)解法一:设抛物线的解析式为y=a(x+3)(x-4)因为B(0,4)在抛物线上,所以4=a(0+3)(0-4)解得a=-1/3所以抛物线解析式为2111(3)(4)4333yxxxx解法二:设抛物线的解析式为2(0)yaxbxca,依题意得:c=4且934016440abab解得1313ab所以所求的抛物线的解析式为211433yxx(2)连接DQ,在Rt△AOB中,2222345ABAOBO所以AD=AB=5,AC=AD+CD=3+4=7,CD=AC-AD=7–5=2因为BD垂直平分PQ,所以PD=QD,PQ⊥BD,所以∠PDB=∠QDB因为AD=AB,所以∠ABD=∠ADB,∠ABD=∠QDB,所以DQ∥AB所以∠CQD=∠CBA.∠CDQ=∠CAB,所以△CDQ∽△CABDQCDABCA即210,577DQDQ所以AP=AD–DP=AD–DQ=5–107=257,2525177t所以t的值是257(3)答对称轴上存在一点M,使MQ+MC的值最小理由:因为抛物线的对称轴为122bxa所以A(-3,0),C(4,0)两点关于直线12x对称连接AQ交直线12x于点M,则MQ+MC的值最小过点Q作QE⊥x轴,于E,所以∠QED=∠BOA=900DQ∥AB,∠BAO=∠QDE,△DQE∽△ABOQEDQDEBOABAO即107453QEDE所以QE=87,DE=67,所以OE=OD+DE=2+67=207,所以Q(207,87)设直线AQ的解析式为(0)ykxmk则2087730kmkm由此得8412441km所以直线AQ的解析式为8244141yx联立128244141xyx由此得128244141xyx所以M128(,)241则:在对称轴上存在点M128(,)241,使MQ+MC的值最小.福州课改21.解:(1)BE、PE、BF三条线段中任选两条.………………………2分(2)在Rt△CHE中,∠CHE=90°∠C=60°,∴EH=32x∵PQ=EF=BE=4-x∴23232EFPQSxx.………………5分(3)2232323(2)232EFPQSxxx∴当x=2时,EFPQS有最大值.此时E、F、P分别为△ABC三边BC、AB、AC的中点,且点C、点Q重合∴平行四边形EFPQ是菱形.过E点作ED⊥FP于D,∴ED=EH=3.∴当⊙E与EFPQ四条边交点的总个数是2个时,0<r<3;当⊙E与EFPQ四条边交点的总个数是4个时,r=3;当⊙E与EFPQ四条边交点的总个数是6个时,3<r<2;当⊙E与EFPQ四条边交点的总个数是3个时,r=2时;当⊙E与EFPQ四条边交点的总个数是0个时,r>2时.……………………………………12分22.解:(1)①点M的坐标为(2,4),点F的坐标为(-2,8).………2分②设1C的函数解析式为xky()0k.∵1C过点F(-2,8)∴1C的函数解析式为xy16.∵2C的顶点B的坐标是(0,6)∴设2C的函数解析式为26(0)yaxa.∵2C过点M(2,4)∴464a21a.∴2C的函数解析式为6212xy.……………………6分(2)依题意得,A(m,0),B(0,m),∴点M坐标为(mm32,31),点F坐标为(m31,m34).①设1C的函数解析式为kyx()0k.∵1C过点F(m31,m34)∴294mk.∵0m∴0k∴在1C的每一支上,y随着x的增大而增大.②答:当m>0时,满足题意的x的取值范围为0<x<m31;当m<0时,满足题意的x的取值范围为m31<x<0.……………………………………………………14分漳州26.(1)B(4,0),(02)C,.·····································································2分213222yxx.·······················································································4分(2)ABC△是直角三角形.···········································································5分证明:令0y,则2132022xx.1214xx,.(10)A,.·································································································6分解法一:5525ABACBC,,.······················································7分22252025ACBCAB.ABC△是直角三角形.················································································8分解法二:11242COAOAOCOBOBOOC,,,90AOCCOB°,AOCCOB△∽△.····················································································7分ACOCBO.90CBOBCO°,90ACOBCO°.即90ACB°.ABC△是直角三角形.················································································8分(3)能.①当矩形两个顶点在AB上时,如图1,CO交GF于H.GFAB∥,CGFCAB△∽△.GFCHABCO.················································9分GAOBxy图1DEFHC解法一:设GFx,则DEx,25CHx,225DGOHOCCHx.2222255DEFGSxxxx矩形·=2255522x.·····················································································10分当52x时,S最大.512DEDG,.ADGAOC△∽△,11222ADDGADODOEAOOC,,,.102D,,(20)E,.························
本文标题:福建各地中考数学压轴题(含答案)
链接地址:https://www.777doc.com/doc-5661856 .html