您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高中数学必修五第一章
1解三角形复习知识点一、知识点总结【正弦定理】1.正弦定理:2sinsinsinabcRABC(R为三角形外接圆的半径).2.正弦定理的一些变式:sinsinsiniabcABC;sin,sin,sin22abiiABCRR2cR;2sin,2sin,2siniiiaRAbRBbRC;(4)RCBAcba2sinsinsin3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解)【余弦定理】1.余弦定理:2222222222cos2cos2cosabcbcAbacacBcbabaC2.推论:222222222cos2cos2cos2bcaAbcacbBacbacCab.设a、b、c是C的角、、C的对边,则:①若222abc,则90C;②若222abc,则90C;③若222abc,则90C.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角.【面积公式】已知三角形的三边为a,b,c,1.111sin()222aSahabCrabc(其中r为三角形内切圆半径)2.设)(21cbap,))()((cpbpappS2【三角形中的常见结论】(1)CBA(2)sin()sin,ABCcos()cos,ABCtan()tan,ABC2cos2sinCBA,2sin2cosCBA;AAAcossin22sin,(3)若CBAcbaCBAsinsinsin若CBAsinsinsincbaCBA(大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边(5)三角形中最大角大于等于60,最小角小于等于60(6)锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方.钝角三角形最大角是钝角最大角的余弦值为负值(7)ABC中,A,B,C成等差数列的充要条件是60B.(8)ABC为正三角形的充要条件是A,B,C成等差数列,且a,b,c成等比数列.二、题型汇总题型1【判定三角形形状】判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC中,由余弦定理可知:222222222是直角ABC是直角三角形是钝角ABC是钝角三角形是锐角abcAabcAabcAABC是锐角三角形(注意:是锐角AABC是锐角三角形)(3)若BA2sin2sin,则A=B或2BA.例1.在ABC中,Abccos2,且abcbacba3))((,试判断ABC形状.题型2【解三角形及求面积】一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC中,1a,3b,030A,求的值3例3.在ABC中,内角CBA,,对边的边长分别是cba,,,已知2c,3C.(Ⅰ)若ABC的面积等于3,求ba,;(Ⅱ)若AABC2sin2)(sinsin,求ABC的面积.题型3【证明等式成立】证明等式成立的方法:(1)左右,(2)右左,(3)左右互相推.例4.已知ABC中,角CBA,,的对边分别为cba,,,求证:BcCbacoscos.题型4【解三角形在实际中的应用】仰角俯角方向角方位角视角例5.如图所示,货轮在海上以40km/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时到达C点观测灯塔A的方位角是65°,则货轮到达C点时,与灯塔A的距离是多少?
本文标题:高中数学必修五第一章
链接地址:https://www.777doc.com/doc-5665785 .html