您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 3.1.1《随机事件的概率》
3.1随机事件的概率问题提出1.日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗?明天上午第一节课一定是八点钟上课吗?等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如,你明天什么时间来到学校?明天中午12:10有多少人在学校食堂用餐?你购买的本期福利彩票是否能中奖?等等,这些问题的结果都具有偶然性和不确定性.2.从辨证的观点看问题,事情发生的偶然性与必然性之间往往存在有某种内在联系.例如,长沙地区一年四季的变化有着确定的、必然的规律,但长沙地区一年里哪一天最热,哪一天最冷,哪一天降雨量最大,那一天下第一场雪等,都是不确定的、偶然的.3.数学理论的建立,往往来自于解决实际问题的需要.对于事情发生的必然性与偶然性,及偶然性事情发生的可能性有多大,我们将从数学的角度进行分析与探究.这些事件发生与否?(1)“地球不停地转动”(2)“木柴燃烧,产生能量”(3)“在常温下,石头风化”(4)“某人射击一次,中靶”(5)“掷一枚硬币,出现正面”(6)“在标准大气压下且温度低于0℃时,雪融化”必然发生必然发生不可能发生不可能发生可能发生也可能不发生可能发生也可能不发生知识探究(一):必然事件、不可能事件和随机事件思考1:考察下列事件:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)在标准大气压下水温升高到100°C会沸腾.这些事件就其发生与否有什么共同特点?思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗?思考3:你能列举一些必然事件的实例吗?思考4:考察下列事件:(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;(3)服用一种药物使人永远年轻.这些事件就其发生与否有什么共同特点?在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.思考5:我们把上述事件叫做不可能事件,你指出不可能事件的一般含义吗?在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件思考6:你能列举一些不可能事件的实例吗?思考7:考察下列事件:(1)某人射击一次命中目标;(2)马林能夺取北京奥运会男子乒乓球单打冠军;(3)抛掷一个骰字出现的点数为偶数.这些事件就其发生与否有什么共同特点?思考8:我们把上述事件叫做随机事件,你指出随机事件的一般含义吗?在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.思考9:你能列举一些随机事件的实例吗?思考10:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为事件,一般用大写字母A,B,C,…表示.物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映.知识探究(二):事件A发生的频率与概率要了解随机事件发生的可能性大小,最直接的方法就是试验.第一步:每人各取一枚同样的硬币,做20次掷硬币试验,记录正面向上的次数和比例,填入下表中:试验:做抛掷一枚硬币的试验,观察它落地时哪一个面朝上姓名试验总次数正面朝上总次数正面朝上的比例思考(1)在试验中出现了几种试验结果?还有其他试验结果吗?思考(2)试验结果与其他同学比较,你的结果和他们一致吗?为什么会出现这种情况?第二步:由组长把本小组同学的试验结果统计一下,填入下表:组次试验总次数正面朝上总次数正面朝上的比例思考(3)与其他小组试验结果比较,正面朝上的比例一致吗?为什么?思考(4)我们发现,每个同学,每个小组试验结果中正面朝上的比例均不完全一致,那么这个差别大小有一定特点吗?第三步:把全班试验结果收集起来,填入下表:班级试验总次数正面朝上总次数正面朝上的比例思考(5)观察一下上述三个表格中“正面朝上的比例”发现有什么特点?随机事件A在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间[0,1]中的某个常数上。结论:演示随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生是否会呈现出一定的规律性呢?问题1:在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为事件A出现的频数,那么事件A出现的频率fn(A)等于什么?频率的取值范围是什么?()[0,1]AnnfAn=?问题2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少?抛掷次数正面向上次数频率20484040120002400030000720881061204860191201214984361240.51810.50690.50160.50050.49960.50110.5问题3:某农科所对某种油菜籽在相同条件下的发芽情况进行了大量重复试验,结果如下表所示:在上述油菜籽发芽的试验中,每批油菜籽发芽的频率的稳定值为多少?每批粒数251070130310700150020003000发芽的粒数24960116282639133918062715发芽的频率10.80.90.8570.8920.9100.9130.8930.9030.9050.9问题4:上述试验表明,随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性,这个规律性是如何体现出来的?事件A发生的频率较稳定,在某个常数附近摆动.问题5:既然随机事件A在大量重复试验中发生的频率fn(A)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作P(A).那么在上述抛掷硬币的试验中,正面向上发生的概率是多少?在上述油菜籽发芽的试验中,油菜籽发芽的概率是多少?二.随机事件的概率问题6:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率?通过大量重复试验得到事件A发生的频率的稳定值,即概率.问题7:在相同条件下,事件A在先后两次试验中发生的频率fn(A)是否一定相等?事件A在先后两次试验中发生的概率P(A)是否一定相等?频率具有随机性,做同样次数的重复试验,事件A发生的频率可能不相同;概率是一个确定的数,是客观存在的,与每次试验无关.问题8:必然事件、不可能事件发生的概率分别为多少?概率的取值范围是什么?问题9:概率为1的事件是什么事件?概率为0的事件是什么事件?问题10:怎样理解“4月3号长沙地区的降水概率为0.6”的含义?(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。(2)频率本身是随机的,在试验前不能确定。(3)概率是一个确定的数,是客观存在的,与每次试验无关。概率与频率的关系:注意以下几点:(1)求一个事件的概率的基本方法是通过大量的重复试验;(3)概率是频率的稳定值,而频率是概率的近似值;(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件的概率;A(4)概率反映了随机事件发生的可能性的大小;(5)必然事件的概率为1,不可能事件的概率为0.因此.10AP理论迁移例1判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)如果a>b,那么a一b>0;(2)在标准大气压下且温度低于0°C时,冰融化;(3)从分别标有数字l,2,3,4,5的5张标签中任取一张,得到4号签;(4)某电话机在1分钟内收到2次呼叫;〈5)手电筒的电池没电,灯泡发亮;(6)随机选取一个实数x,得|x|≥0.例2某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是多少?射击次数n102050100200500击中靶心次数m8194492178455击中靶心的频率mn0.80.950.880.920.890.910.90例3.某篮球运动员在同一条件下进行投篮练习,结果如下表:投篮次数8101520304050进球次数681217253239进球频率(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约是多少?(3)这位运动员进球的概率是0.8,那么他投10次篮一定能投中8次吗?不一定.投10次篮相当于做10次试验,每次试验的结果都是随机的,所以投10次篮的结果也是随机的.概率约是0.80.780.750.800.800.850.830.80小结作业1.概率是频率的稳定值,根据随机事件发生的频率只能得到概率的估计值.2.随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大;反之,概率越接近于0,事件A发生的可能性就越小.因此,概率就是用来度量某事件发生的可能性大小的量.3.任何事件的概率是0~1之间的一个确定的数,小概率(接近0)事件很少发生,大概率(接近1)事件则经常发生,知道随机事件的概率的大小有利于我们作出正确的决策.
本文标题:3.1.1《随机事件的概率》
链接地址:https://www.777doc.com/doc-5706666 .html