您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 人教版数学八下20.1《数据的集中趋势》(第1课时)ppt课件
义务教育教科书(RJ)八年级数学下册第二十章数据的分析20.1数据的集中趋势数据2、3、4、1、2的平均数是________,这个平均数叫做_________平均数.2.4算术日常生活中,我们常用平均数表示一组数据的“平均水平”问题1一家公司打算招聘一名英文翻译,对甲、乙两位应试者进行了听、说、读、写、的英语水平测试,他们的各项成绩如表所示:(1)如果公司想招一名综合能力较强的翻译,请计算两名应试者的平均成绩,应该录用谁?应试者听说读写甲85788573乙73808283探究一、乙的平均成绩为.738082837954+++=.显然甲的成绩比乙高,所以从成绩看,应该录取甲.我们常用平均数表示一组数据的“平均水平”.应试者听说读写甲85788573乙73808283解:甲的平均成绩为,8578857380254+++=.(2)如果公司想招一名笔译能力较强的翻译,用算术平均数来衡量他们的成绩合理吗?应试者听说读写甲85788573乙73808283听、说、读、写的成绩按照2:1:3:4的比确定.重要程度不一样!应试者听说读写甲85788573乙738082832:1:3:47328018238348042134+++==..+++x乙 因为乙的成绩比甲高,所以应该录取乙.8527818537347952134+++==.+++x甲解:,4312权思考能把这种加权平均数的计算方法推广到一般吗?8578857213421379345+++=.+++112212+++=+++nnnxwxwxwx一般地,若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则叫做这n个数的加权平均数.问题4与问题(1)、(2)、(3)比较,你能体会到权的作用吗?思考:如果公司想招一名口语能力较强的翻译,则应该录取谁?应试者听说读写甲85788573乙73808283听、说、读、写的成绩按照3:3:2:2的比确定.探究二、例1一次演讲比赛中,评委将从演讲内容,演讲能力,演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例,计算选手的综合成绩(百分制)。进入决赛的前两名选手的单项成绩如下表所示:请决出两人的名次。选手演讲内容演讲能力演讲效果A859595B958595探究三、选手演讲内容演讲能力演讲效果A859595B958595权50%40%10%解:选手A的最后得分是905.9385.42%10%40%50%1095%4095%5085选手B的最后得分是915.9345.47%10%40%50%1095%4085%5095由上可知选手B获得第一名,选手A获得第二名.议一议、你能说说算术平均数与加权平均数的区别和联系吗?2、在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算术平均数。1、算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等)做一做、1.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示:候选人测试成绩(百分制)面试笔试甲8690乙9283(1)如果公司认为,面试和笔试成绩同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为,作为公关人员面试成绩应该比笔试成绩更重要,并分别赋于它们6和4的权,计算甲、乙两人各自的平均成绩,看看谁将被录取?2.晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次是95分、90分、85分,小桐这学期的体育成绩是多少?做一做(1)加权平均数在数据分析中的作用是什么?当一组数据中各个数据重要程度不同时,加权平均数能更好地反映这组数据的平均水平.(2)权的作用是什么?权反映数据的重要程度,数据权的改变一般会影响这组数据的平均水平.1、已知:x1,x2,x3…x10的平均数是a,x11,x12,x13…x30的平均数是b,则x1,x2,x3…x30的平均数是()D401(10a+30b)(A)301(a+b)(B)21(a+b)(C)301(10a+20b)(D)2.某校八年级一班有学生50人,八年级二班有学生45人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为83.4分,这两个班95名学生的平均分是多少?解:(81.5×50+83.4×45)÷95=7828÷95=82.4答:这两个班95名学生的平均分是82.4分.3.某班进行个人投篮比赛,受了污损的下表记录了在规定时间内投进n个球的人数分布情况:同时,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均投进2.5个球,问投进3个球和4个球的各有多少人?进球数n012345投进n球的人数1272
本文标题:人教版数学八下20.1《数据的集中趋势》(第1课时)ppt课件
链接地址:https://www.777doc.com/doc-5715911 .html