您好,欢迎访问三七文档
当前位置:首页 > 财经/贸易 > 资产评估/会计 > 层次分析报告法及matlab程序
标准实用文案大全层次分析法建模层次分析法(AHP-AnalyticHierachyprocess)----多目标决策方法70年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、社会现象)现象的规律。基本内容:(1)多目标决策问题举例AHP建模方法(2)AHP建模方法基本步骤(3)AHP建模方法基本算法(3)AHP建模方法理论算法应用的若干问题。参考书:1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社2、程理民等,运筹学模型与方法教程,(第10章),清华大学出版社3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社一、问题举例:A.大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉-Reputation);⑤工作环境好(人际关系和谐等)⑥发展晋升(promote,promotion)机会多(如新单位或单位发展有后劲)等。问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?工作选择贡献收入发展声誉工作环境生活环境标准实用文案大全B.假期旅游地点选择暑假有3个旅游胜地可供选择。例如:1P:苏州杭州,2P北戴河,3P桂林,到底到哪个地方去旅游最好?要作出决策和选择。为此,要把三个旅游地的特点,例如:①景色;②费用;③居住;④环境;⑤旅途条件等作一些比较——建立一个决策的准则,最后综合评判确定出一个可选择的最优方案。目标层准则层方案层C.资源开发的综合判断7种金属可供开发,开发后对国家贡献可以通过两两比较得到,决定对哪种资源先开发,效用最用。二、问题分析:例如旅游地选择问题:一般说来,此决策问题可按如下步骤进行:可供选择的单位P1’P2‘-----Pn选择旅游地景色费用居住饮食旅途P1P2P3对经济发展、贡献U铜Co铁In磷酸盐钿Ur铝Al金Go经济价值开採费风险费要求量战略重要性交通条件标准实用文案大全(S1)将决策解分解为三个层次,即:目标层:(选择旅游地)准则层:(景色、费用、居住、饮食、旅途等5个准则)方案层:(有1P,2P,3P三个选择地点)并用直线连接各层次。(S2)互相比较各准则对目标的权重,各方案对每一个准则的权重。这些权限重在人的思维过程中常是定性的。例如:经济好,身体好的人:会将景色好作为第一选择;中老年人:会将居住、饮食好作为第一选择;经济不好的人:会把费用低作为第一选择。而层次分析方法则应给出确定权重的定量分析方法。(S3)将方案后对准则层的权重,及准则后对目标层的权重进行综合。(S4)最终得出方案层对目标层的权重,从而作出决策。以上步骤和方法即是AHP的决策分析方法。三、确定各层次互相比较的方法——成对比较矩阵和权向量在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy等人提出:一.致矩阵法....即:1.不把所有因素放在一起比较,而是两两相互比较2.对此时採用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,提高准确度。因素比较方法——成对比较矩阵法:目的是,要比较某一层n个因素nCCC,,,21对上一层因素O的影响(例如:旅游决策解中,比较景色等5个准则在选择旅游地这个目标中的重要性)。採用的方法是:每次取两个因素iC和jC比较其对目标因素O的影响,并用ija表示,全部比较的结果用成对比较矩阵表示,即:)1(1,0,)(ijijijjiijnxnijaaaaaaA或(1)由于上述成对比较矩阵有特点:jiijijijaaaaA1,0,)(故可称A为正互反矩阵:显然,由jiijaa1,即:1jiijaa,故有:1jia标准实用文案大全例如:在旅游决策问题中:2112a=(费用)(景色)21CC表示:2O1O21的重要性为(费用)对目标的重要性为景色)对目标(CC故:),费用重要性为即景色重要性为21(2112a14413a=(居住条件)(景色)31CC表示:1OC4O(31的重要性为(居住条件)对目标的重要性为景色)对目标C即:景色为4,居住为1。17723a=(居住条件)(费用)32CC表示:1OC7O(32的重要性为(居住条件)对目标的重要性为费用)对目标C即:费用重要性为7,居住重要性为1。因此有成对比较矩阵:1135131112513131211714155337412121A??问题:稍加分析就发现上述成对比较矩阵的问题:①即存在有各元素的不一致性,例如:既然:41114a;22113313113212112aaCCaCCa所以应该有:188412131231213223CCCCaaCCa而不应为矩阵A中的1723a②成对比较矩阵比较的次数要求太,因:n个元素比较次数为:!2)1(2nnCn次,因此,问题是:如何改造成对比较矩阵,使由其能确定诸因素nCC,,1对上层因素O的权重?对此Saoty提出了:在成对比较出现不一致情况下,计算各因素nCC,,1对因素(上层因素)O的权重方法,并确定了这种不一致的容许误差范围。为此,先看成对比较矩阵的完全一致性——成对比较完全一致性标准实用文案大全四:一致性矩阵Def:设有正互反成对比较矩阵:1a,,1,,11nn221122222212211121121111nnnnnnjiijnnnn(4)除满足:(i)正互反性:即)1(10jiijjiijijaaaaa或而且还满足:(ii)一致性:即n2,1,ji,hahaakaaaajikjijiij//有点点错误则称满足上述条件的正互反对称矩阵A为一致性矩阵,简称一致阵。一致性矩阵(一致阵)性质:性质1:A的秩Rank(A)=1//显然A的唯一非0的特征根为n性质2:A的任一列(行)向量都是对应特征根n的特征向量:即有(特征向量、特征值):nnnnnn212221212111,则向量321标准实用文案大全满足:WnnWnWn21212112111即:0)(WnIA我的理解:通过A(变换A与W中的元素有关)变换将一致W矩阵变成权向量W(特征向量),如果正互反矩阵W’接近一致矩阵,同样的道理变换A可以将W’变成权向量(这里的权向量与W’稍有不同)启发与思考:既然一致矩阵有以上性质,即n个元素W1,W2,W3,…Wn构成的向量n21是一致矩阵A的特征向量,则可以把向量W归一化后的向量,看成是诸元素W1,W2,W3,…Wn目标的权向量,因此,可以用求A的特征根和特征向量的办法,求出元素W1,W2,W3,…Wn相对于目标O的劝向量。解释:一致矩阵即:n件物体nMMM,,,21,它们重量分别为n,将他们两两比较重量,其比值构成一致矩阵,若用重量向量n21右乘A,则标准实用文案大全:称特征根法,求权向量的方法量权向量,此种用特征向为即对上层因素O的权重,,C,,CC,就表示诸因素=W=则归一化后的特征向量,=:重量向量 为特征根的特征向量为以的特征根为n211in分析:若重量向量n21未知时,则可由决策者对物体nMMM,,,21之间两两相比关系,主观作出比值的判断,或用Delphi(调查法)来确定这些比值,使A矩阵(不一定有一致性)为已知的,并记此主观判断作出的矩阵为(主观)判断矩阵A,并且此A(不一致)在不一致的容许范围内,再依据:A的特征根或和特征向量W连续地依赖于矩阵的元素ija,即当ija离一致性的要求不太远时,A的特征根i和特征值(向量)W与一致矩阵A的特征根和特征向量W也相差不大的道理:由特征向量W求权向量W的方法即为特征向量法,并由此引出一致性检查的方法。问题:Remark以上讨论的用求特征根来求权向量W的方法和思路,在理论上应解决以下问题:1.一致阵的性质1是说:一致阵的最大特征根为n(即必要条件),但用特征根来求特征向量时,应回答充分条件:即正互反矩阵是否存在正的最大特征根和正的特征向量?且如果正互标准实用文案大全反矩阵A的最大特征根nmax时,A是否为一致阵?2.用主观判断矩阵A的特征根和特征向量W连续逼近一致阵A的特征根和特征向量W时,即:由kkklim得到:WWkklim即:AAkklim是否在理论上有依据。3.一般情况下,主观判断矩阵A在逼近于一致阵A的过程中,用与A接近的*A来代替A,即有AA*,这种近似的替代一致性矩阵A的作法,就导致了产生的偏差估计问题,即一致性检验问题,即要确定一种一致性检验判断指标,由此指标来确定在什么样的允许范围内,主观判断矩阵是可以接受的,否则,要两两比较构造主观判断矩阵。此问题即一致性检验问题的内容。以上三个问题:前两个问题由数学严格比较可获得(见教材P325,定理1、定理2)。第3个问题:Satty给出一致性指标(TH1,TH2介绍如下:)附:Th1:(教材P326,perronTh比隆1970)对于正矩阵A(A的所有元素为正数)(1)A的最大特征根是正单根;(2)对应正特征向量W(W的所有分量为正数)(3)WeAeeAkTkklim其中:111e为半径向量,W是对应的归一化特征向量证明:(3)可以通过将A化为标准形证明Th2:n阶正互反阵A的最大特征根n;当n时,A是一致阵标准实用文案大全五、一致性检验——一致性指标:1.一致性检验指标的定义和确定——IC(平均值)的定义:当人们对复杂事件的各因素,采用两两比较时,所得到的主观判断矩阵A,一般不可直接保证正互反矩阵A就是一致正互反矩阵A,因而存在误差(及误差估计问题)。这种误差,必然导致特征值和特征向量之间的误差WW)(-及。此时就导致问题WmaxWA=与问题nWAW之间的差别。(上述问题中max是主观判断矩阵A的特征值,W是带有偏差的相对权向量)。这是由判断矩阵不一致性所引起的。因此,为了避免误差太大,就要衡量主观判断矩阵A的一致性。因为:①当主观判断矩阵A为一致阵A时就有:nknkkknknnkkna11111=A为一致阵时有:1iia(a[ii]为对角线上的值,按照一致性矩阵的理解,它应该为1)此时存在唯一的非nmax(由一致阵性质1:Rark(4)=1,A有唯一非O最大特征根且n
本文标题:层次分析报告法及matlab程序
链接地址:https://www.777doc.com/doc-5721437 .html