您好,欢迎访问三七文档
第1页共9页动量、动量守恒定律及应用一、考纲要求二、知识网络三.专题要点1.动量:动量是状态量;因为V是状态量,动量是失量,其方向与物休动动方向相同。2.动量的变化:ΔP是失量,其方向与速度的变化ΔV的方向相同。求解方法:求解动量的变化时遵循平行四边形定则。(1)若初末动量在同一直线上,则在选定正方向的前提下,可化失量运算为代数运算。(2)若初末动量不在同一直线上,则运算遵循平行四边形定则。(目前只考虑在同一直线上的情况)【例1】一个质量为m=40g的乒乓球自高处落下,以速度v=1m/s碰地,竖直向上弹回,碰撞时间极短,离地的速率为v=0.5m/s。求在碰撞过程中,乒乓球动量变化为多少?【例2】:一质量为0.5kg的木块以10m/s水平速度沿倾角为300的光滑斜面向上滑动(设斜面足够长),求木块在1s末的动量和3s内的动量变化量的大小?g=10m/s2考点要求说明考点解读动量、动量守恒定律及其应用Ⅱ动量守恒定律只限于一维情况本章的重点内容:唯一的二级要求是动量及其守恒定律,本专题的特点是题目较简单,但为了照顾知识点的覆盖面,通常会出现一个大题中再套二、三个小题的情况弹性碰撞和非弹性碰撞、反冲运动Ⅰ验证动量守恒定律(实验、探究)Ⅰ第2页共9页3.冲量:力和力的作用时间的乘积叫做冲量:I=Ft(1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。(2)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。(3)高中阶段只要求会用I=Ft计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。(4)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。【例3】质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?【点评】特别要注意,该过程中弹力虽然不做功,但对物体有冲量。4、动量定理物体所受合外力的冲量等于物体的动量变化。既I=Δp(1)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。(2)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。(3)动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。点评:要注意区分“合外力的冲量”和“某个力的冲量”,根据动量定理,是“合外力的冲量”等于动量的变化量,而不是“某个力的冲量”等于动量的变化量。这是在应用动量定理解题时经常出错的地方,要引起注意。【例4】以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变化是多少?点评:有了动量定理,不论是求合力的冲量还是求物体动量的变化,都有了两种可供选择的等价的方法。本题用冲量求解,比先求末动量,再求初、末动量的矢量差要方便得多。当合外力为恒力时往往用Ft来求较为简单;当合外力为变力时,在高中阶段只能用Δp来求。【动量定理的定性应用】【例5】鸡蛋从同一高度自由下落,第一次落在地板上,鸡蛋被打破;第二次落在泡沫塑料垫上,没有被打破。这是为什么?第3页共9页【例6】某同学要把压在木块下的纸抽出来。第一次他将纸迅速抽出,木块几乎不动;第二次他将纸较慢地抽出,木块反而被拉动了。这是为什么?【例7】一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ,则()A、过程I中钢珠的动量的改变量等于重力的冲量B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小C、I、Ⅱ两个过程中合外力的总冲量等于零D、过程Ⅱ中钢珠的动量的改变量等于零【动量定理的定量计算】利用动量定理解题,必须按照以下几个步骤进行:(1)明确研究对象和研究过程。研究对象可以是一个物体,也可以是几个物体组成的质点组。质点组内各物体可以是保持相对静止的,也可以是相对运动的。研究过程既可以是全过程,也可以是全过程中的某一阶段。(2)进行受力分析。只分析研究对象以外的物体施给研究对象的力。所有外力之和为合外力。研究对象内部的相互作用力(内力)会改变系统内某一物体的动量,但不影响系统的总动量,因此不必分析内力。如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和。(3)规定正方向。(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。(5)根据动量定理列式求解。【例7】质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:(1)沙对小球的平均阻力F;(2)小球在沙坑里下落过程所受的总冲量I。【例8】质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?FABCmMv0v/第4页共9页【例9】质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反跳的最大高度为h2=0.2m,从小球下落到反跳到最高点经历的时间为Δt=0.6s,取g=10m/s2。求:小球撞击地面过程中,球对地面的平均压力的大小F。【例10】一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。试求物体在水平面上所受的摩擦力。点评:遇到涉及力、时间和速度变化的问题时,运用动量定理解答往往比运用牛顿运动定律及运动学规律求解简便。5.动量守恒定律(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。(2)适用范围:动量守恒定律是自然界中普遍适用的规律,既适用宏观低速运动的物体,也适用微观高速运动的粒子。大到宇宙天体间的相互作用,小到微观粒子的相互作用,无不遵守动量守恒定律,它是解决爆炸、碰撞、反冲及复杂的相互作用的物体系统类问题的基本规律。(3)动量守恒的条件为:①充分且必要条件:系统不受外力或所受外力为零。②近似守恒:虽然系统所受外力之和不为零,但系统内力远远大于外力,此时外力可以忽略不计,如:爆炸和碰撞。【碰撞】碰撞的三种情况:碰撞过程遵守的规律——应同时遵守三个原则①系统动量守恒:②系统动能不增加:2222112/222/1121212121vmvmvmvm③实际情景可能:碰前、碰后两个物体的位置关系(不穿越)和速度关系应遵循客观实际.如甲物追乙物并发生碰撞,碰前甲的速度必须大于乙的速度,碰后甲的速度必须小于、等于乙的速度或与甲反向运动.【例11】(动量守恒定律的适用情景)小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度?规律总结:系统的总动量有时可能不守恒,但只要在某一方向上守恒(如此题:水平方向上,内力大于外力),动量守恒定律仍然适用。第5页共9页【例12】(动量守恒定律的判断)把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射出子弹时,关于枪、子弹、车的下列说法正确的是()A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.只有忽略不计子弹和枪筒之间的摩擦,枪、车和子弹组成的系统的动量才近似守恒D.枪、子弹、车组成的系统动量守恒【动量守恒的两种模型】在运用动量守恒定律处理问题时,常常遇到以下两种模型:1.人船模型:人船模型的适用条件是两个物体组成的系统在运动过程中动量守恒,并且总动量为零.两物体在其内力的相互作用下,各物体的动量虽然都在变化,但总动量仍为零,即0=Mv1-mv2.【例13】有一艘质量为M=120kg的船停在静水中,船长L=3m.船上一个质量为m=60kg的人从船头走到船尾.不计水的阻力,则船在水中移动的距离为多少?【例14】如图,在光滑的水平面上,有一静止的小车,甲、乙两人站在小车左、右两端,当他俩同时相向而行时,发现小车向右运动,下列说法中不正确的是()A.乙的速度必定大于甲的速度B.乙对小车的冲量必定大于甲对小车的冲量C.乙的动量必定大于甲的动量D.甲、乙的动量之和必定不为零2、子弹—木块模型【例15】(动量守恒定律的判断)把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射出子弹时,关于枪、子弹、车的下列说法正确的是()A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.只有忽略不计子弹和枪筒之间的摩擦,枪、车和子弹组成的系统的动量才近似守恒D.枪、子弹、车组成的系统动量守恒【例16】在高为h=10m的高台上,放一质量为M=9.9kg的木块,它与平台边缘的距离L=1m.今有一质量为m=0.1kg的子弹以v0的水平向右的速度射入木块(作用时间极短),并留在木块中,如图所示.木块向右滑行并冲出平台,最后落在离平台边缘水平距离为处,已知木块与平台的动摩擦因数g取10m/s2,求(1)4m/s(2)500m/s:(1)木块离开平台时的速度大小;(2)子弹射入木块的速度大【例17】矩形滑块由不同材料的上下两层固体组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块若射中上层子弹刚好不穿出,若射中下层子弹刚好能嵌入,那么()A.两次子弹对滑块做的功一样多B.两次滑块所受冲量一样大C.子弹嵌入上层时对滑块做功多D.子弹嵌入上层时滑块所受冲量大规律总结:解决这样的问题,还是应该从动量的变化角度去思考,其实,不管是从哪个地方射入,相互作用的系统没有变化,因此,动量和机械能的变化也就没有变化。42xm第6页共9页【常见的题型】【例18】.如图所示,设车厢长为L,质量为M,静止在光滑的水平面上,车厢内有一质量为m的物体以初速度v0向右运动,与车厢来回碰撞n次后,静止在车厢中,这时车厢速度是()A.v0,水平向右B.0C.mv0/(M+m),水平向右D.mv0/(M-m),水平向左【例19】(碰撞中过程的分析)如图所示,位于光滑水平桌面上的小滑块A和B都可视作质点,质量相等。B与轻质弹簧相连。设B静止,A以某一初速度向B运动并与弹簧发生碰撞。在整个碰撞过程中,弹簧具有的最大弹性势能等于()A.A的初动能B.A的初动能的1/2C.A的初动能的1/3D.A的初动能的1/4规律总结:处理带有弹簧的碰撞问题,认真分析运动的变化过程是关键,面对弹簧问题,一定要注重细节的分析,采取“慢镜头”的手段。【例20】两磁铁各放在一辆小车上,小车能在水平面上无摩擦地沿同一直线运动.已知甲车和磁铁的总质量为0.5kg,乙车和磁铁的总质量为1.0kg.两磁铁的S极相对,推动一下,使两车相向运动,某时刻甲的速率为2m/s,乙的速率为3m/s.方向与甲相反,两车运动过程中始终未相碰,求:(1)两车最近时,乙的速度为多大?(2)甲车开始反向运动,乙的速度为多大?(1)1.33m/s(2)2m/s【例21】如图所示,A、B两物体质量分别为mA、mB,且mAmB,置于光滑水平面上,相距较远.将两个大小均为F的力,同时分别作用在A、B上经相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将()A.停止运动B.向左运动C.向右运动D.运动方向不能确定【练习】1.如图所示,A、B两物体的质量mAmB,中间用一段细绳相连并在一被压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态.若地面光滑,则在细绳被剪断后,A、B从C上未滑离之前,A、B在C上向相反方向滑动过程中()A.若A、B与C之间的摩擦力大小相同,则A、B组成的系统动量守恒,A、B、C组成的系统动量也守恒B.若A、B与C之间的摩擦力大小不相同,则A
本文标题:动量守恒定律全解析
链接地址:https://www.777doc.com/doc-5721540 .html