您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2017北京市东城区初一(下)期末
1/172017北京市东城区初一(下)期末数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.有理数9的平方根是()A.±3B.﹣3C.3D.±2.下列实数中的无理数是()A.1.414B.0C.﹣D.3.如图,为估计池塘岸边A,B的距离,小明在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离可能是()A.30米B.25米C.20米D.5米4.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.如图,已知直线a∥b,∠1=100°,则∠2等于()A.60°B.80°C.100°D.70°6.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(0,3)C.(3,2)D.(1,3)7.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()2/17A.4B.5C.6D.78.若m>n,则下列不等式中一定成立的是()A.m+2<n+3B.2m<3nC.a﹣m<a﹣nD.ma2>na29.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确的是()A.第四小组有10人B.第五小组对应圆心角的度数为45°C.本次抽样调查的样本容量为50D.该校“一分钟跳绳”成绩优秀的人数约为480人10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1B.y=2n+nC.y=2n+1+nD.y=2n+n+1二、填空题(共8小题,每小题2分,满分16分)11.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样做的数学道理是.12.用不等式表示:a与2的差大于﹣1.3/1713.把无理数,,,表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是.14.若(a﹣3)2+=0,则a+b=.15.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为.16.在平面直角坐标系中,若x轴上的点P到y轴的距离为3,则点P的坐标是.17.如图,△ABC中,点D在BC上且BD=2DC,点E是AC中点,已知△CDE面积为1,那么△ABC的面积为.18.在数学课上,老师提出如下问题:如图1,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小军同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.老师说:小军同学的方案是正确的.请回答:该方案最节省材料的依据是.三、解答题(本题共10个小题,共54分,解答应写出文字说明,证明过程或演算步骤)19.计算:+|﹣2|+﹣(﹣).20.解不等式组:,并把它的解集在数轴上表示出来.4/1721.完成下面的证明:已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°,证明:过点C作CF∥AB.∵AB∥CF(已知),∴∠B=().∵AB∥DE,CF∥AB(已知),∴CF∥DE()∴∠2+=180°()∵∠2=∠BCD﹣∠1,∴∠D+∠BCD﹣∠B=180°().22.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接AA1,求△AOA1的面积.23.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOC=70°.(1)求∠BOD的度数;(2)求∠BOC的度数.5/1724.阅读下列材料:2013年,北京发布《2013年至2017年清洁空气行动计划》,北京的空气污染治理目标是力争到2017年全市PM2.5年均浓度比2012年下降25%以上,控制在60微克/立方米左右.根据某空气监测单位发布数据,2013年北京PM2.5年均浓度89.5微克/立方米,清洁空气问题引起了所有人的高度关注.2014年北京PM2.5年均浓度85.9微克/立方米,比2013年下降3.6微克/立方米.2015年北京PM2.5年均浓度80.6微克/立方米,比上一年又下降了5.3微克/立方米,治理成效比较明显.2016年北京PM2.5年均浓度73微克/立方米,下降更加明显.去年11月,北京市通过的《北京市“十三五”时期环境保护和生态环境建设规划》确定的生态环保目标为:2020年,北京市PM2.5年均浓度比2015年下降30%,全市空气质量优良天数比例超过56%.根据以上材料解答下列问题:(1)在折线图中表示2013﹣2016年北京市PM2.5年度浓度变化情况,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2017年北京市PM2.5年均浓度为,你的预估理由是.(3)根据《北京市“十三五”时期环境保护和生态环境建设规划》,估计2020年北京市PM2.5年度浓度降至微克/每立方米.(结果保留整数)25.如图,已知在△ABC中,DE∥CA,∠1=∠2,∠3=∠4,∠BAC=84°.求∠EDA的度数.26.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.6/17(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?27.已知:∠MON=36°,OE平分∠MON,点A,B分别是射线OM,OE,上的动点(A,B不与点O重合),点D是线段OB上的动点,连接AD并延长交射线ON于点C,设∠OAC=x,(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=;(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ABD中有两个相等的角?若存在,求出x的值;若不存在,请说明理由.28.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2属派生点”P′的坐标为;(2)若点P的“3属派生点”P′的坐标为(6,2),则点P的坐标;(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.7/17数学试题答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.【考点】21:平方根.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故选A2.【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:∵无理数就是无限不循环小数,且1.414为有限小数,﹣为分数,0是整数,都属于有理数,为无限不循环小数,∴为无理数.故选:D.3.【考点】K6:三角形三边关系.【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:设A,B间的距离为x.根据三角形的三边关系定理,得:15﹣10<x<15+10,解得:5<x<25,故线段可能是此三角形的第三边的是20.故选:C.4.【考点】V2:全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;8/17D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.5.【考点】JA:平行线的性质.【分析】先根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:如图,∵∠1与∠3是对顶角,∴∠3=∠1=100°,∵a∥b,∴∠2=180°﹣∠3=180°﹣100°=80°.故选B.6.【考点】D3:坐标确定位置.【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【解答】解:如图所示:棋子“炮”的点的坐标为:(1,3).故选:D.7.【考点】L3:多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.9/17故选:C.8.【考点】C2:不等式的性质.【分析】根据不等式的基本性质对各选项分析判断即可得解.【解答】解:A、m>n左边加2,右边加3不一定能得到m+2<n+3,故本选项错误;B、m>n左边乘2,右边乘3不一定能得到2m<3n,故本选项错误;C、m>n两边乘以﹣1再加上a可以得到a﹣m<a﹣n,故本选项正确;D、m>n两边乘以a2,若a=0,则ma2>na2不成立,故本选项错误.故选C.9【考点】V8:频数(率)分布直方图;V3:总体、个体、样本、样本容量;VB:扇形统计图.【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【解答】解:抽取样本人数为10÷20%=50人,第四小组人数为50﹣4﹣10﹣16﹣6﹣4=10人,第五小组对应圆心角度数为360°×=43.2°,用样本估计总体,该校“一分钟跳绳”成绩优秀的人数约为1200×=480人,故选B.10.【考点】37:规律型:数字的变化类.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.二、填空题(共8小题,每小题2分,满分16分)11.【考点】K4:三角形的稳定性.【分析】在窗框上斜钉一根木条,构成三角形,故可用三角形的稳定性解释.【解答】解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故应填:三角形的稳定性.10/1712.【考点】C8:由实际问题抽象出一元一次不等式.【分析】首先表示出a与2的差为a﹣2,再表示大于﹣1是:>1,故可得不等式.【解答】解:由题意得:a﹣2>﹣1;故答案为:a﹣2>﹣1.13.【考点】29:实数与数轴;2B:估算无理数的大小.【分析】根据被覆盖的数在3到4之间,化为带根号的数的被开方数的范围,然后即可得解.【解答】解:∵墨迹覆盖的数在3~4,即~,∴符合条件的数是.故答案为:.14.【考点】23:非负数的性质:算术平方根;1F:非负数的性质:偶次方.【分析】根据非负数的性质列式求出a、b的值
本文标题:2017北京市东城区初一(下)期末
链接地址:https://www.777doc.com/doc-5724312 .html