您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 3.2.1函数的最大(小)值与导数(1)
3.2.1函数的最大(小)值与导数高二数学选修2-2第三章导数及其应用3016年3月18日星期五•1.理解函数最值的概念.•2.掌握利用导数求函数最值的方法.•3.掌握利用导数求最值的步骤.•1.求函数在[a,b]上的最值.(重点)•2.函数的极值与最值的区别与联系.(易混点)•3.利用函数的单调性,图象等综合考查.(难点)温故知新①如果在x0附近的左侧f/(x)0,右侧f/(x)0,那么,f(x0)是极大值;3.导数为零的点是该点为极值点的必要条件,而不是充分条件.极值存在的充要条件是在该点处的导数为零且在其附近左右两侧的导数异号.4.求函数极值的步骤:1.当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方法是:2.函数的极值点不是点,是导数为零时对应的x0②如果在x0附近的左侧f/(x)0,右侧f/(x)0,那么,f(x0)是极小值.左正右负取极大左负右正取极小求导—求极值点—列表—求极值在社会生活实践中,为了发挥最大的经济效益,常常遇到如何能使用料最省、产量最高,效益最大等问题,这些问题的解决常常可转化为求一个函数的最大值和最小值问题。函数在什么条件下一定有最大、最小值?他们与函数极值关系如何?新课引入极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。新课—函数的最值xX2oaX3bx1y观察右边一个定义在区间[a,b]上的函数y=f(x)的图象,你能找出函数y=f(x)在区间[a,b]上的最大值、最小值吗?发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______。f(x1)、f(x3)f(x2)f(b)f(x3)问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?知识回顾一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:1.最大值:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最大值2.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最小值观察下列图形,你能找出函数的最值吗?xoyax1by=f(x)x2x3x4x5x6xoyax1by=f(x)x2x3x4x5x6),(bax][bax,在开区间内的连续函数不一定有最大值与最小值.在闭区间上的连续函数必有最大值与最小值因此:该函数没有最值。f(x)max=f(a),f(x)min=f(x3)例题选讲例1求函数y=x4-2x2+5在区间[-2,2]上的最大值与最小值.解:.443xxy令,解得x=-1,0,1.0y当x变化时,的变化情况如下表:yy,x-2(-2,-1)-1(-1,0)0(0,1)1(1,2)2y’-0+0-0+y13↘4↗5↘4↗13从上表可知,最大值是13,最小值是4.想一想:为什么函数的最值点有两个?(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个最小值.求f(x)在闭区间[a,b]上的最值的步骤:(1)求f(x)在区间(a,b)内极值(极大值或极小值);讲授新课注意:1.在定义域内,最值唯一;极值不唯一2.最大值一定比最小值大.求函数的最值时,应注意以下几点:(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.(2)闭区间[a,b]上的连续函数一定有最值.开区间(a,b)内的可导函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.(3)函数在其定义域上的最大值与最小值至多各有一个,而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).练习1函数y=x³+3x²-9x在[-4,4]上的最大值为,最小值为.分析:由f´(x)=3x²+6x-9=0,区间[-4,4]端点处的函数值为f(-4)=20,f(4)=76得x1=-3,x2=1函数值为f(-3)=27,f(1)=-576-5当x变化时,y′、y的变化情况如下表:x-4(-4,-3)-3(-3,1)1(1,4)4y′+0-0+0y2027-576比较以上各函数值,可知函数在[-4,4]上的最大值为f(4)=76,最小值为f(1)=-5'21233,3fxxx解:1、求出所有导数为0的点;2、计算函数的极值和端点值;3、比较确定最值.3()61233fxxx练习2求函数在,上的最大值与最小值.'0,22fxxx令解得:或(2)22(2)10(3)15,(3)3ffff又,,3()6123310.fxxx函数在,上的最大值为22,最小值为求函数最值三部曲:322()2622371a2()22fxxxafx例题:已知函数在,上有最小值求实数的值;求在,上的最大值。反思:本题属于逆向探究题型:其基本方法最终落脚到比较极值与端点函数值大小上,从而解决问题,往往伴随有分类讨论。21()612fxxx解:()()002fxxx令解得或(240,fa又)40373aa由已知得解得(2)(1)()2,2fx由知在的最大值为3.(0),fa(2)8fa※拓展提高1、我们知道,如果在闭区间【a,b】上函数y=f(x)的图像是一条连续不断的曲线,那么它必定有最大值和最小值;那么把闭区间【a,b】换成开区间(a,b)是否一定有最值呢?如下图:不一定2、函数f(x)有一个极值点时,极值点必定是最值点。3、如果函数f(x)在开区间(a,b)上只有一个极值点,那么这个极值点必定是最值点。有两个极值点时,函数有无最值情况不定。21x402fxx3讨论函数()=4x在,的最值情况。※动手试试2'()1281(21)(61)fxxxxx1()()6fxf最大值没有最小值课时小结1.求在[a,b]上连续,(a,b)上可导的函数f(x)在[a,b]上的最值的步骤:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.2.求函数的最值时,应注意以下几点:(1)要正确区分极值与最值这两个概念.(2)在[a,b]上连续,(a,b)上可导的函数f(x)在(a,b)内未必有最大值与最小值.(3)一旦给出的函数在(a,b)上有个别不可导点的话,不要忘记在步骤(2)中,要把这些点的函数值与各极值和f(a)、f(b)放在一起比较.布置作业1、课本P69习题3——2A组第1,2题和《步步高40分钟课时训练》P117第7题2、《步步高40分钟课时训练》补充练习:1.下列说法正确的是()(A)函数的极大值就是函数的最大值(B)函数的极小值就是函数的最小值(C)函数的最值一定是极值(D)若函数的最值在区间内部取得,则一定是极值.2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则()fx()(A)等于0(B)大于0(C)小于0(D)以上都有可能3.函数y=432111432xxx,在[-1,1]上的最小值为()(A)0(B)-2(C)-1(D)1213ADA4、函数y=x3-3x2,在[-2,4]上的最大值为()(A)-4(B)0(C)16(D)20C1.求函数f(x)=x2-4x+6在区间[1,5]内的极值与最值故函数f(x)在区间[1,5]内的极小值为3,最大值为11,最小值为2解法二:f’(x)=2x-4令f’(x)=0,即2x-4=0,得x=2x1(1,2)2(2,5)5y,0y-+3112选做题:解法一:将二次函数f(x)=x2-4x+6配方,利用二次函数单调性处理2、。1求f(x)xsinx在区间[0,2π]上的最值2最小值是0.是π,函数f(x)的最大值xxfcos21)(0)(xf34,3221xx)(xf)(xf323423423234322332332解令解得x0(0,)(,)+-+00(,)0应用(2009年天津(文)21T)处的切线的斜率;设函数其中,131223Rxxmxxxf.0m(1)当时,求曲线在点1mxfy1,1f(2)求函数的单调区间与极值。xf答:(1)斜率为1;.1,1,1,1内是增函数减函数,在内是,在mmmmxf;313223mmxf极小313223mmxf极大(2)(04浙江文21)(本题满分12分)已知a为实数,(Ⅰ)求导数;(Ⅱ)若,求在[-2,2]上的最大值和最小值;(Ⅲ)若在(-∞,-2]和[2,+∞)上都是递增的,求a的取值范围。))(4()(2axxxf)(xf0)1(f)(xf)(xf2'()324fxxax12amaxmin9450(1),()2327ffff2'()32402,2]fxxax两个根在[22a一.是利用函数性质二.是利用不等式三.是利用导数求函数最值的一般方法小结:
本文标题:3.2.1函数的最大(小)值与导数(1)
链接地址:https://www.777doc.com/doc-5730156 .html