您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高一数学上学期质量检测卷附答案
高考网高一数学上学期质量检测卷(附答案)一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={0,2,4,6,8,10},集合A={2,4,6},B={1},则UA∪B等于AA.{0,1,8,10}B.{1,2,4,6}C.{0,8,10}D.Φ2.下列幂函数中过点(0,0),(1,1)的偶函数是BA.21xyB.4xyC.2xyD.31xy3.映射f:A→B,在f作用下A中元素,xy与B中元素1,3xy对应,则与B中元素0,1对应的A中元素是CA.1,2B.0,3C.1,2D.1,34.若1,0aa,则函数y=ax-1的图象一定过点BA.(0,1)B.(1,1)C.(1,0)D.(0,-1)5.某学生从家里去学校上学,骑自行车一段时间,因自行车爆胎,后来推车步行,下图中横轴表示出发后的时间,纵轴表示该生离学校的距离,则较符合该学生走法的图是D6.函数y=322xx的单调递减区间是AA.(-∞,-3)B.(-1,+∞)C.(-∞,-1)D.[-1,+∞)7.已知集合21|xxM,0|axxN,若NM,则a的取值范围是CA.]2,(B.(-1,+∞)C.[-1,+∞)D.[-1,1]dd0d0d0d0tOt0ABCDtdOt0tdOt0tdOt0高考网如下图,可表示函数yfx的图象的只能是D9.若函数f(x)是定义在[-6,6]上的偶函数,且在[-6,0]上单调递减,则DA.f(3)+f(4)0B.f(-3)-f(-2)0C.f(-2)+f(-5)0D.f(4)-f(-1)010.已知函数f(x)是R上的增函数,A(0,-2),B(3,2)是其图象上的两点,那么|f(x+1)|<2的解集是BA.(1,4)B.(-1,2C.(-∞,1)∪[4,+∞)D.(-∞,-1)∪[2,+∞)题号12345678910答案ABCBDACDDB二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11、三个数60.7,0.76,log0.76的大小关系是60.7>0.76>log0.7612.设22(1)()(12)2(2)xxfxxxxx≤≥,若()3fx,则x313.3436xy则21xy114、函数f(x)为R上的奇函数,且当x0时,f(x)=x(x-1),则当x0时,f(x)=-x(x+1)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本题满分13分)0xyA11xy0B11xy0Cxy0D高考网计算:(1))125(logloglog532(2))6)(2(31212132baba÷)3(6561ba解:(1)原式=log2(log33)2分=log214分=06分(2)原式=653121612132)]3()6(2[ba11分=4a13分16.(本题满分13分)已知2{1,2,},{1,}AxBx,且A∩B=B,求x的值。解:∵A∩B=B∴22xxx或4分即2,0,1xxx或或7分当2x时,{1,2,4}A,{1,2}B符合题意;8分当0x时,{1,2,0},{1,0}AB符合题意;9分当1x时,{1,2,1},{1,1}AB,由元素的互异性,不符合题意故舍去。11分故x=0或x=2。13分17.(本题满分13分)已知函数2()352fxxx,求(2)f,()fa,(3)fa,()(3)faf的值。解:2(2)3(2)5(2)2f=6+52+2=8+523分2()3()5()2faaa=2352aa6分2(3)3(3)5(3)2faaa=231314aa9分2()(3)35227152fafaa=23516aa13分高考网(本题满分13分)求不等式28272310xxaa)10(aa且中的x的取值范围.解:对于28272310xxaa,当1a时,有10x+2327x-28,5分解得x<3;6分当01a时,有10x+2327x-28,10分解得x>3.11分所以,当1a时,x的取值范围为{x︱x<3};当01a时,x的取值范围为{x︱x>3}.13分19.(本小题满分14分)已知函数f(x)=x2+ax+b,且对任意的实数x都有f(1+x)=f(1-x)成立.(1)求实数a的值;(2)利用单调性的定义证明函数f(x)在区间[1,+∞)上是增函数.解:(1)由f(1+x)=f(1-x)得,(1+x)2+a(1+x)+b=(1-x)2+a(1-x)+b,3分整理得:(a+2)x=0,5分由于对任意的x都成立,∴a=-2.7分(2)根据(1)可知f(x)=x2-2x+b,下面证明函数f(x)在区间[1,+∞)上是增函数.设121xx,则12()()fxfx=(2112xxb)-(2222xxb)9分=(2212xx)-2(12xx)=(12xx)(12xx-2)11分∵121xx,则12xx>0,且12xx-2>2-2=0,12分∴12()()fxfx>0,即12()()fxfx,13分故函数f(x)在区间[1,+∞)上是增函数.14分20.(本题满分14分)已知:函数()fx对一切实数,xy都有()()fxyfy(21)xxy成立,且高考网(1)0f.(1)求(0)f的值。(2)求()fx的解析式。(3)已知aR,设P:当102x时,不等式()32fxxa恒成立;Q:当[2,2]x时,()()gxfxax是单调函数。如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩RCB(R为全集)。解:(1)令1,1xy,则由已知(0)(1)1(121)ff∴(0)2f4分(2)令0y,则()(0)(1)fxfxx又∵(0)2f∴2()2fxxx8分(3)不等式()32fxxa即2232xxxa即21xxa当102x时,23114xx,又213()24xa恒成立故{|1}Aaa10分22()2(1)2gxxxaxxax又()gx在[2,2]上是单调函数,故有112,222aa或∴{|3,5}Baaa或12分∴A∩RCB={|15}aa14分
本文标题:高一数学上学期质量检测卷附答案
链接地址:https://www.777doc.com/doc-5779262 .html