您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高三数学圆锥曲线方程及性质复习资料
2009~2010学年度高三数学(人教版A版)第一轮复习资料第33讲圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测2010年:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F、2F的距离的和等于常数(大于21||FF)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。若M为椭圆上任意一点,则有21||||2MFMFa椭圆的标准方程为:22221xyab(0ab)(焦点在x轴上)或12222bxay(0ab)(焦点在y轴上)。注:①以上方程中,ab的大小0ab,其中222cab;②在22221xyab和22221yxab两个方程中都有0ab的条件,要分清焦点的位置,只要看2x和2y的分母的大小。例如椭圆221xymn(0m,0n,mn)当mn时表示焦点在x轴上的椭圆;当mn时表示焦点在y轴上的椭圆(2)椭圆的性质①范围:由标准方程22221xyab知||xa,||yb,说明椭圆位于直线xa,yb所围成的矩形里;②对称性:在曲线方程里,若以y代替y方程不变,所以若点(,)xy在曲线上时,点(,)xy也在曲线上,所以曲线关于x轴对称,同理,以x代替x方程不变,则曲线关于y轴对称。若同时以x代替x,y代替y方程也不变,则曲线关于原点对称。所以,椭圆关于x轴、y轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x轴、y轴的交点坐标。在椭圆的标准方程中,令0x,得yb,则1(0,)Bb,2(0,)Bb是椭圆与y轴的两个交点。同理令0y得xa,即1(,0)Aa,2(,0)Aa是椭圆与x轴的两个交点。所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。同时,线段21AA、21BB分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a;在22RtOBF中,2||OBb,2||OFc,22||BFa,且2222222||||||OFBFOB,即222cac;④离心率:椭圆的焦距与长轴的比cea叫椭圆的离心率。∵0ac,∴01e,且e越接近1,c就越接近a,从而b就越小,对应的椭圆越扁;反之,e越接近于0,c就越接近于0,从而b越接近于a,这时椭圆越接近于圆。当且仅当ab时,0c,两焦点重合,图形变为圆,方程为222xya。2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PFPFa)。注意:①(*)式中是差的绝对值,在1202||aFF条件下;12||||2PFPFa时为双曲线的一支(含2F的一支);21||||2PFPFa时为双曲线的另一支(含1F的一支);②当122||aFF时,12||||||2PFPFa表示两条射线;③当122||aFF时,12||||||2PFPFa不表示任何图形;④两定点12,FF叫做双曲线的焦点,12||FF叫做焦距。椭圆和双曲线比较:椭圆双曲线定义1212||||2(2||)PFPFaaFF1212||||||2(2||)PFPFaaFF方程22221xyab22221xyba22221xyab22221yxab焦点(,0)Fc(0,)Fc(,0)Fc(0,)Fc注意:如何有方程确定焦点的位置!(2)双曲线的性质①范围:从标准方程12222byax,看出曲线在坐标系中的范围:双曲线在两条直线ax的外侧。即22ax,ax即双曲线在两条直线ax的外侧。②对称性:双曲线12222byax关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线12222byax的对称中心,双曲线的对称中心叫做双曲线的中心。③顶点:双曲线和对称轴的交点叫做双曲线的顶点。在双曲线12222byax的方程里,对称轴是,xy轴,所以令0y得ax,因此双曲线和x轴有两个交点)0,()0,(2aAaA,他们是双曲线12222byax的顶点。令0x,没有实根,因此双曲线和y轴没有交点。1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点。2)实轴:线段2AA叫做双曲线的实轴,它的长等于2,aa叫做双曲线的实半轴长。虚轴:线段2BB叫做双曲线的虚轴,它的长等于2,bb叫做双曲线的虚半轴长④渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线。从图上看,双曲线12222byax的各支向外延伸时,与这两条直线逐渐接近。⑤等轴双曲线:1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线。定义式:ab;2)等轴双曲线的性质:(1)渐近线方程为:xy;(2)渐近线互相垂直注意以上几个性质与定义式彼此等价。亦即若题目中出现上述其一,即可推知双曲线为等轴双曲线,同时其他几个亦成立。3)注意到等轴双曲线的特征ab,则等轴双曲线可以设为:)0(22yx,当0时交点在x轴,当0时焦点在y轴上⑥注意191622yx与221916yx的区别:三个量,,abc中,ab不同(互换)c相同,还有焦点所在的坐标轴也变了。3.抛物线(1)抛物线的概念平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)。定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。方程022ppxy叫做抛物线的标准方程。注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(2p,0),它的准线方程是2px;(2)抛物线的性质一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:pxy22,pyx22,pyx22.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表:标准方程22(0)ypxp22(0)ypxp22(0)xpyp22(0)xpyp图形oFxyloxyFlxyoFl焦点坐标(,0)2p(,0)2p(0,)2p(0,)2p准线方程2px2px2py2py范围0x0x0y0y对称性x轴x轴y轴y轴顶点(0,0)(0,0)(0,0)(0,0)离心率1e1e1e1e说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调p的几何意义:是焦点到准线的距离。四.【典例解析】题型1:椭圆的概念及标准方程例1.求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(4,0)、(4,0),椭圆上一点P到两焦点距离的和等于10;(2)两个焦点的坐标分别是(0,2)、(0,2),并且椭圆经过点35(,)22;(3)焦点在x轴上,:2:1ab,cb;(4)焦点在y轴上,225ab,且过点(2,0);(5)焦距为b,1ab;(6)椭圆经过两点35(,)22,(3,5)。解析:(1)∵椭圆的焦点在x轴上,故设椭圆的标准方程为22221xyab(0ab),∵210a,4c,∴2229bac,所以,椭圆的标准方程为221259xy。(2)∵椭圆焦点在y轴上,故设椭圆的标准方程为22221yxab(0ab),由椭圆的定义知,22223535312()(2)()(2)1010210222222a,∴10a,又∵2c,∴2221046bac,所以,椭圆的标准方程为221106yx。(3)∵6c,∴2226abc,①又由:2:1ab代入①得2246bb,∴22b,∴28a,又∵焦点在x轴上,所以,椭圆的标准方程为22182xy。(4)设椭圆方程为22221yxab,∴221b,∴22b,又∵225ab,∴23a,所以,椭圆的标准方程为22132yx.(5)∵焦距为6,∴3c,∴2229abc,又∵1ab,∴5a,4b,所以,椭圆的标准方程为2212516xy或2212516yx.(6)设椭圆方程为221xymn(,0mn),由2235()()221351mnmn得6,10mn,所以,椭圆方程为221106yx.点评:求椭圆的方程首先清楚椭圆的定义,还要知道椭圆中一些几何要素与椭圆方程间的关系例2.(1)(06山东)已知椭圆中心在原点,一个焦点为F(-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是。(2)(06天津理,8)椭圆的中心为点(10)E,,它的一个焦点为(30)F,,相应于焦点F的准线方程为72x,则这个椭圆的方程是()A.222(1)21213xyB.222(1)21213xyC.22(1)15xyD.22(1)15xy解析:(1)已知222222242,23161164(23,0)babcyxaabcF为所求;(2)椭圆的中心为点(1,0),E它的一个焦点为(3,0),F∴半焦距2c,相应于焦点F的准线方程为7.2x∴252ac,225,1ab,则这个椭圆的方程是22(1)15xy,选D。点评:求椭圆方程的题目属于中低档题目,掌握好基础知识就可以。题型2:椭圆的性质例3.(1)(06山东理,7)在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为()(A)2(B)22(C)21(D)42(2)(2009全国卷Ⅰ理)设双曲线22221xyab(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于()A.3B.2C.5D.6【解析】设切点00(,)Pxy,则切线的斜率为0'0|2xxyx.由题意有0002yxx又2001yx解得:2201,2,1()5bbxeaa.【答案】C点评:本题重点考查了椭圆和双曲线的基本性质。例4.(1)((2009全国卷Ⅰ理)已知椭圆22:12xCy的右焦点为F,右准线为l,点Al,线段AF交C于点B,若3FAFB,则||AF=()A.2B.2C.3D.3【解析】过点B作BMl于M,并设右准线l与X轴的交点为N,易知FN=1.由题意3FAFB,故2||3BM.又由椭圆的第二定义,得222||233BF||2AF.故选A【答案】A(2)(2009浙江理)过双曲线22221(0,0)xyabab的右顶点A作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为,BC.若12ABBC,则双曲线的离心率是()A.2B.
本文标题:高三数学圆锥曲线方程及性质复习资料
链接地址:https://www.777doc.com/doc-5782054 .html