您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学人教A版选修12学业分层测评7反证法Word版含解析
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是()A.有两个内角是钝角B.有三个内角是钝角C.至少有两个内角是钝角D.没有一个内角是钝角【解析】“最多有一个”的反设是“至少有两个”,故选C.【答案】C2.下列命题错误的是()A.三角形中至少有一个内角不小于60°B.四面体的三组对棱都是异面直线C.闭区间[a,b]上的单调函数f(x)至多有一个零点D.设a,b∈Z,若a,b中至少有一个为奇数,则a+b是奇数【解析】a+b为奇数⇔a,b中有一个为奇数,另一个为偶数,故D错误.【答案】D3.“自然数a,b,c中恰有一个偶数”的否定正确的为()【导学号:19220029】A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数【解析】自然数a,b,c的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数.所以否定正确的是a,b,c中都是奇数或至少有两个偶数.【答案】D4.设x,y,z都是正实数,a=x+1y,b=y+1z,c=z+1x,则a,b,c三个数()A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于2【解析】若a,b,c都小于2,则a+b+c6,①而a+b+c=x+1x+y+1y+z+1z≥6,②显然①,②矛盾,所以C正确.【答案】C5.(2016·温州高二检测)用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90°+90°+C180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A,B,C中有两个直角,不妨设A=B=90°,正确顺序的序号为()A.①②③B.①③②C.②③①D.③①②【解析】根据反证法的步骤,应该是先提出假设,再推出矛盾,最后否定假设,从而肯定结论.【答案】D二、填空题6.(2016·南昌高二检测)命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是__________________.【解析】“至少有一个”的否定是“没有一个”.【答案】任意多面体的面没有一个是三角形或四边形或五边形7.(2016·汕头高二检测)用反证法证明命题“如果ab,那么3a3b”时,假设的内容应是________.【解析】3a与3b的关系有三种情况:3a3b,3a=3b和3a3b,所以“3a3b”的反设应为“3a=3b或3a3b”.【答案】3a=3b或3a3b8.(2016·石家庄高二检测)设a,b是两个实数,给出下列条件:①a+b=1;②a+b=2;③a+b2;④a2+b22.其中能推出“a,b中至少有一个大于1”的条件是________(填序号).【解析】若a=13,b=23,则a+b=1,但a1,b1,故①不能推出.若a=b=1,则a+b=2,故②不能推出.若a=-2,b=1,则a2+b22,故④不能推出.对于③,即a+b2,则a,b中至少有一个大于1.反证法:假设a≤1且b≤1,则a+b≤2与a+b2矛盾,因此假设不成立,故a,b中至少有一个大于1.【答案】③三、解答题9.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,试证明:a,b,c至少有一个不小于1.【导学号:19220030】【证明】假设a,b,c均小于1,即a1,b1,c1,则有a+b+c3.而与a+b+c=2x2-2x+12+3=2x-122+3≥3矛盾,故假设不成立,即a,b,c至少有一个不小于1.10.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.【证明】假设a,b,c成等差数列,则a+c=2b,两边同时平方得a+c+2ac=4b.把b2=ac代入a+c+2ac=4b,可得a+c=2b,即a,b,c成等差数列,这与a,b,c不成等差数列矛盾.所以a,b,c不成等差数列.[能力提升]1.有以下结论:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.下列说法中正确的是()A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确【解析】用反证法证题时一定要将对立面找准.在①中应假设p+q2,故①的假设是错误的,而②的假设是正确的.【答案】D2.已知命题“在△ABC中,A≠B.求证sinA≠sinB”.若用反证法证明,得出的矛盾是()A.与已知条件矛盾B.与三角形内角和定理矛盾C.与已知条件矛盾且与三角形内角和定理矛盾D.与大边对大角定理矛盾【解析】证明过程如下:假设sinA=sinB,因为0Aπ,0Bπ,所以A=B或A+B=π.其中A=B与A≠B矛盾;A+B=π与三角形内角和定理矛盾,所以假设不成立.所以sinA≠sinB.【答案】C3.(2016·九江高二检测)有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是________.【解析】因为只有一人获奖,所以丙、丁只有一个说的对,同时甲、乙中只有一人说的对,假设乙说的对,这样丙就说的错,丁就说的对,也就是甲也说的对,与甲说的错矛盾,所以乙说的错,从而知甲、丙说的对,所以丙为获奖歌手.【答案】丙4.(2016·温州高二检测)设{an},{bn}是公比不相等的两个等比数列,cn=an+bn,证明:数列{cn}不是等比数列.【证明】假设数列{cn}是等比数列,则(an+bn)2=(an-1+bn-1)(an+1+bn+1).①因为{an},{bn}是公比不相等的两个等比数列,设公比分别为p,q,所以a2n=an-1an+1,b2n=bn-1bn+1.代入①并整理,得2anbn=an+1bn-1+an-1bn+1=anbnpq+qp,即2=pq+qp.②当p,q异号时,pq+qp0,与②相矛盾;当p,q同号时,由于p≠q,所以pq+qp2,与②相矛盾.故数列{cn}不是等比数列.
本文标题:高中数学人教A版选修12学业分层测评7反证法Word版含解析
链接地址:https://www.777doc.com/doc-5782640 .html