您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 一次函数压轴题(提高-有答案)
中考一次函数压轴题1.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(1,0),点B从点A出发,以每秒1个单位速度沿x轴正方向运动,过点B作y轴的平行线交直线y=于点C,点D在直线BC上,且BD=BA.连接AC,AD,记△ACD的面积为S,设运动时间为t秒.(1)填空:①设AB=t,则BD=,BC=(用含t的代数式表示);②当点D是线段BC的中点时,S=;(2)当S=时,求t的值;(3)当点D在线段BC上时,连接OD,直线OD与过点C且与OC垂直的直线交于点E,当△CDE是以DE为腰的等腰三角形时,直接写出点C的坐标.2.如图①,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(0,﹣3),点E(3,m)在直线y=2x上,将△AOB沿射线OE方向平移,使点O与点E重合,得到△CED(点A、B分别与点C,D对应),线段CE与y轴交于点F,线段AB,CD分别与直线y=2x交于点P,Q.(1)求点C的坐标;(2)如图②,连接AC,四边形ACQP的面积为(直接填空);(3)过点C的直线CN与直线y=2x交于点N,当∠NCE=∠POB时,请直接写出点N的坐标.中考一次函数压轴题3.如图1,A(﹣4,0).正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由.4.如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1(1)求直线BC的解析式;(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE=S△BDF?若存在,求出a的值;若不存在,请说明理由;(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.中考一次函数压轴题5.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α=45°,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,请直接写出点P的坐标;若不能,试说明理由.6.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y=﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.(1)直接写出直线BD的解析式为,S△ABC=;(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠PAO,求点P的坐标.中考一次函数压轴题7.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.8.如图所示,平面直角坐标系中,直线y=kx+b与x轴交于点A,与y轴交于点B,且AB=2,AO:BO=2:;(1)求直线AB解析式;(2)点C为射线AB上一点,点D为AC中点,连接DO,设点C的横坐标为t,△BDO的面积为S,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当点C在第一象限时,连接CO,过D作DE⊥CO于E,在DE的延长线上取点F,连接OF、AF,且OF=OD,当∠DFA=30°时,求S的值.中考一次函数压轴题9.如图,直线y=﹣x+4与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,点E是点B以Q为对称中心的对称点,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连结PQ,设P,Q两点运动时间为t秒(0<t≤1.5).(1)直接写出A,B两点的坐标.(2)当t为何值时,PQ∥OB?(3)四边形PQBO面积能否是△ABO面积的;若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△APQ为直角三角形?(直接写出结果)10.在平面直角坐标系中,O为坐标原点,直线y=x+4分别交y轴和x轴于点A、B两点,点C在x轴的正半轴上,AO=2OC,连接AC.(1)如图1,求直线AC的解析式;(2)如图2,点P在线段AB上,点Q在BC的延长线上,满足:AP=CQ,连接PQ交AC于点D,过点P作PE⊥AC于点E,设点P的横坐标为t,△PQE的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,PQ交y轴于点M,过点A作AN⊥AC交QP的延长线于点N,过点Q作QF∥AC交PE的延长线于点F,若MN=DQ,求点F的坐标.中考一次函数压轴题11.在平面直角坐标系xOy中,对于图形G和图形M,它们关于原点O的“中位形”定义如下,图形G上的任意一点P,图形M上的任意一点Q,作△OPQ平行于PQ的中位线,由所有这样的中位线构成的图形,叫图形G和图形M关于原点O的“中位形”.已知直线y=x+b分别与x轴,y轴交于A、B,图形S是中心为坐标原点,且边长为2的正方形.(1)如图1,当b=2时,点A和点B关于原点O的“中位形”的长度是(请直接写出答案);(2)如图2,若点A和点B关于原点O的“中位形”与图形S有公共点,求b的取值范围;(3)如图3,当b=﹣6时,图形S沿直线y=x平移得到图形T,若图形T和线段AB关于原点O的“中位形”与原来的的图形S没有公共点,请直接写出图形T的中心的横坐标t的取值范围.中考一次函数压轴题12.如图1,在平面直角坐标系中,直线AC:y=﹣3x+3与直线AB:y=ax+b交于点A,且B(﹣9,0).(1)若F是第一象限位于直线AB上方的一点,过F作FE⊥AB于E,过F作FD∥y轴交直线AB于D,D为AB中点,其中△DFF的周长是12+4,若M为线段AC上一动点,连接EM,求EM+MC的最小值,此时y轴上有一个动点G,当|BG﹣MG|最大时,求G点坐标;(2)在(1)的情况下,将△AOC绕O点顺时针旋转60°后得到△A′OC',如图2,将线段OA′沿着x轴平移,记平移过程中的线段OA′为O′A″,在平面直角坐标系中是否存在点P,使得以点O′,A″,E,P为顶点的四边形为菱形,若存在,请求出点P的坐标,若不存在,请说明理由.中考一次函数压轴题13.如图,在平面直角坐标系xOy中,点A是一次函数y=3x﹣20与y=﹣x+12的交点,过点A分别作x,y轴的垂线段,垂足分别是B和C,动点P和Q以1个单位/秒的速度,分别从点C和B出发,沿线段CA和BO方向,向终点A和O运动,设运动时间为t秒.(1)证明:无论运动时间t(0<t<8)取何值,四边形OPAQ始终为平行四边形;(2)当四边形OPAQ为菱形时,请求出此时PQ的长及直线PQ的函数解析式;(3)当OP满足2≤OP≤5时,连接PQ,直线PQ与y轴交于点M,取线段AC的中点N,试确定三角形MNP的面积S与运动时间t之间的函数关系,并求出S的取值范围.14.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.15.如图,已知直线AB与正比例函数y=kx(k≠0)的图象交于点A(5,5),与x轴交于点B与y轴交于点C(0,).点P为直线OA上的动点,点P的横坐标为t,以点P为顶点,作长方形PDEF,满足PD∥x轴,且PD=1,PF=2.(1)求k值及直线AB的函数表达式;并判定t=1时,点E是否落在直线AB上,请说明理由;(2)在点P运动的过程中,当点F落在直线AB上时,求t的值;(3)在点P运动的过程中,若长方形PDEF与直线AB有公共点,求t的取值范围.中考一次函数压轴题16.对于平面直角坐标系xOy中的点A和点P,若将点P绕点A逆时针旋转90°后得到点Q,则称点Q为点P关于点A的“垂链点”,图1为点P关于点A的“垂链点”Q的示意图.(1)已知点A的坐标为(0,0),点P关于点A的“垂链点”为点Q;①若点P的坐标为(2,0),则点Q的坐标为.②若点Q的坐标为(﹣2,1),则点P的坐标为.(2)如图2,已知点C的坐标为(1,0),点D在直线y=x+1上,若点D关于点C的“垂链点”在坐标轴上,试求出点D的坐标.(3)如图3,已知图形G是端点为(1,0)和(0,﹣2)的线段,图形H是以点O为中心,各边分别与坐标轴平行的边长为6的正方形,点M为图形G上的动点,点N为图形H上的动点,若存在点T(0,t),使得点M关于点T的“垂链点”恰为点N,请直接写出t的取值范围.17.如图,存平面直角坐标系中,直线AC与x轴交手点C,与y轴交于点A,OA=,OC=OA,分别以OA,OC力作矩形OABC,直线OD:y=x交AB于点D,交直线AC于点H.(1)求直线AC的解析式及点H的坐标;(2)如图2,P为直线OD上一动点,E点,F点为直线AC上两动点(E在上,F在下),满足EF=,当|PC﹣PB|的值最大时,求PF+EF+DE的最小值,并求出此时E点的坐标.中考一次函数压轴题(3)如图3,将△AHD绕着点O顺时针旋转α(0°≤α≤60°),记旋转后的三角形为△A′H′D′.线段A′H′所在的直线交直线AC于点M(M不与A、C重合),交x轴于点N,在平面内是否存在一点Q,使得以C,M,N,Q四点形成的四边形为菱形?若存在,直接写出Q点的坐标;若不存在,请说出理由.18.阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y=4x+1互为“互助直线”;材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=;(2)直线y=﹣2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(3)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣1)到直线y=ax+b的直角距离.19.如图,直线y=x+6与y轴交于点A,与x轴交于点B,点E为线段AB的中点,∠ABO的平分线BD与y轴相交于点D,A、C两点关于x轴对称.(1)一动点P从点E出发,沿适当的路径运动到直线BC上的点F,再沿适当的路径
本文标题:一次函数压轴题(提高-有答案)
链接地址:https://www.777doc.com/doc-5786914 .html