您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 人教版高中数学必修五同课异构课件12应用举例第1课时解三角形的实际应用举例距离问题教
1.2应用举例第1课时解三角形的实际应用举例—距离问题:多应用实际测量中有许正弦定理和余弦定理在(1)测量距离.(2)测量高度..)3(测量角度ACB51o55m75o解三角形公式、定理正弦定理:余弦定理:三角形边与角的关系:RCcBbAa2sinsinsinAbccbacos2222Baccabcos2222Cabbaccos22221ABC180.2.大角对大边,小角对小边。,bcacbA2cos222,cabacB2cos222。abcbaC2cos222余弦定理的作用(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角;(3)判断三角形的形状。三角形的面积公式111ABC222SabsinCbcsinAacsinB。斜三角形的解法已知条件定理选用一般解法用正弦定理求出另一对角,再由A+B+C=180˚,得出第三角,然后用正弦定理求出第三边。正弦定理余弦定理正弦定理余弦定理由A+B+C=180˚,求出另一角,再用正弦定理求出两边。用余弦定理求第三边,再用余弦定理求出一角,再由A+B+C=180˚得出第三角。用余弦定理求出两角,再由A+B+C=180˚得出第三角。一边和两角(ASA或AAS)两边和夹角(SAS)三边(SSS)两边和其中一边的对角(SSA)实际应用问题中有关的名称、术语1.仰角、俯角、视角。(1)当视线在水平线上方时,视线与水平线所成角叫仰角。(2)当视线在水平线下方时,视线与水平线所成角叫俯角。(3)由一点出发的两条视线所夹的角叫视角。(一般这两条视线过被观察物的两端点)水平线视线视线仰角俯角2.方向角、方位角。(1)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角叫方向角。(2)方位角:指北方向线顺时针旋转到目标方向线所成的角叫方位角。东西北南60°30°45°20°ABCD点A在北偏东60°,方位角60°.点B在北偏西30°,方位角330°.点C在南偏西45°,方位角225°.点D在南偏东20°,方位角160°.3.水平距离、垂直距离、坡面距离。水平距离垂直距离坡面距离坡度(坡度比)i:垂直距离/水平距离坡角α:tanα=垂直距离/水平距离α例1.设A、B两点在河的两岸,要测量两点之间的距离。测量者在A的同测,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51°,∠ACB=75°,求A、B两点间的距离(精确到0.1m).分析:已知两角一边,可以用正弦定理解三角形sinsinABACCB=解:根据正弦定理,得答:A,B两点间的距离为65.7米。sinsinsin55sinsinsin55sin7555sin7565.7()sin(1805175)sin54ABACACBABCACACBACBABABCABCmABCD.,),(,,2两点间距离的方法设计一种测量达不可到两点都在河的对岸、如图例BABAABCDαβγδa分析:用例1的方法,可以计算出河的这一岸的一点C到对岸两点的距离,再测出∠BCA的大小,借助于余弦定理可以计算出A、B两点间的距离。解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,应用正弦定理得计算出AC和BC后,再在△ABC中,应用余弦定理计算出AB两点间的距离sin()sin()sin()sin180()sinsinsin()sin180()aaACaaBC222cosABACBCACBC变式训练:若在河岸选取相距40米的C、D两点,测得BCA=,ACD=,CDB=,BDA=60304560求A、B两点间距离.注:阅读教材P12,了解基线的概念练习1.一艘船以32.2nmile/h的速度向正北航行。在A处看灯塔S在船的北偏东20o的方向,30min后航行到B处,在B处看灯塔在船的北偏东65o的方向,已知距离此灯塔6.5nmile以外的海区为航行安全区域,这艘船可以继续一直沿正北方向航行吗?11545sin2016.1sin207.787()sin45sin45,sin657.06()6.5ASBSBASABSBnmileSABhhSBnmilehnmile解:在中,=,,由正弦定理得设点到直线的距离为则此船可以继续一直沿正北方向航行答:此船可以继续一直沿正北方向航行变式练习:两灯塔A、B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东30o,灯塔B在观察站C南偏东60o,则A、B之间的距离为多少?练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为6°20’,AC长为1.40m,计算BC的长(精确到0.01m).(1)什么是最大仰角?最大角度最大角度最大角度最大角度(2)例题中涉及一个怎样的三角形?在△ABC中已知什么,要求什么?CAB最大角度最大角度最大角度最大角度已知△ABC中AB=1.95m,AC=1.40m,夹角∠CAB=66°20′,求BC.解:由余弦定理,得答:顶杆BC约长1.89m。CAB222222cos1.951.4021.951.40cos66203.5711.89(m)BCABACABACABC课堂小结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解总结实际问题抽象概括示意图数学模型推理演算数学模型的解实际问题的解还原说明练习:P19习题1.2A组1,4,5作业:P19习题1.2A组2,3
本文标题:人教版高中数学必修五同课异构课件12应用举例第1课时解三角形的实际应用举例距离问题教
链接地址:https://www.777doc.com/doc-5787764 .html