您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 大物电磁学-第六章-动态电路
第二部分动态电路线性动态电路(一阶、二阶和高阶)零输入响应零状态响应全响应阶跃响应和冲激响应稳态分量暂态分量强制分量自由分量第6章、第7章、第14章列写状态方程,卷积积分(信号与系统讲)1.电容元件的特性3.电容、电感的串并联等效重点:2.电感元件的特性返回第6章储能元件6.1电容元件电容器在外电源作用下,正负电极上分别带上等量异号电荷,撤去电源,电极上的电荷仍可长久地聚集下去,是一种储存电能的部件。下页上页_+qqU电导体由绝缘材料分开就可以产生电容。注意返回1.定义电容元件储存电能的两端元件。任何时刻其储存的电荷q与其两端的电压u能用q~u平面上的一条曲线来描述。0),(qufuq下页上页o返回任何时刻,电容元件极板上的电荷q与电压u成正比。qu特性曲线是过原点的直线。Cuqquo下页上页2.线性时不变电容元件tanuqC电容器的电容返回电路符号C+-u+q-qF(法拉),常用F,pF等表示。单位下页上页1F=106F1F=106pF返回tuCtCutqidddddd3.电容的电压电流关系电容元件VCR的微分形式下页上页u、i取关联参考方向C+-ui返回tuCidd②当u为常数(直流)时,i=0。电容相当于开路,电容有隔断直流作用;下页上页表明①某一时刻电容电流i的大小取决于电容电压u的变化率,而与该时刻电压u的大小无关。电容是动态元件;返回C+-ui③实际电路中通过电容的电流i为有限值,则电容电压u必定是时间的连续函数。idtdutξiCtud)(1)(00d)(1d)(1tttξiCξiC)(00d1ttξiCut下页上页tu0返回)()(00d1ttξiCuutt①某一时刻的电容电压值与-到该时刻的所有电流值有关,即电容元件有记忆电流的作用,故称电容元件为记忆元件。表明下页上页②研究某一初始时刻t0以后的电容电压,需要知道t0时刻开始作用的电流i和t0时刻的电压u(t0)。电容元件VCR的积分形式返回①当电容的u,i为非关联方向时,上述微分和积分表达式前要冠以负号;下页上页注意②上式中u(t0)称为电容电压的初始值,它反映电容初始时刻的储能状况,也称为初始状态。tuCidd)()(00)d1(ttξiCuutt返回4.电容的功率和储能tuCuuipdd①当电容充电,p0,电容吸收功率。②当电容放电,p0,电容发出功率。功率电容能在一段时间内吸收外部供给的能量转化为电场能量储存起来,在另一段时间内又把能量释放回电路,因此电容元件是储能元件,它本身不消耗能量。u、i取关联参考方向下页上页表明返回从t0到t电容储能的变化量:)(21)(21022tCutCuWCttCCuξξuCuW)ξ(21ddd2电容的储能下页上页)(21)(2122CutCu)(212tCu返回①电容的储能只与当时的电压值有关,电容电压不能跃变,反映了储能不能跃变;②电容储存的能量一定大于或等于零。下页上页表明0)(21)t(W2CtCu返回例+-)(tusC0.5Fi求电容电流i、功率P(t)和储能W(t)21t/s20uS/V电源波形解uS(t)的函数表示式为:s20s2142s10200)(Stttttttu下页上页返回stttttttu20s2142s10200)(SstttttuCti20s211s10100dd)(S解得电流21t/s1i/A-1下页上页0返回s20s2142s10200)()()(tttttttitutp21t/s20p/W-2吸收功率发出功率下页上页返回s20s21)2(s1000)(21)(222CtttttttCutW21t/s10WC/J下页上页返回s20s211s10100)(ttttti21t/s1i/A-1若已知电流求电容电压,有220d11d01)(s1000tttξCξCtcuttCtutu124d)1(5.01)1()(s21tt2tCutu20d05.01)2()(下页上页0返回实际电容器的模型下页上页_q+qiC+-uGC+-uGC+-ui返回下页上页实际电容器返回下页上页电力电容返回下页上页冲击电压发生器返回6.2电感元件i(t)+-u(t)电感线圈把金属导线绕在一骨架上构成一实际电感线圈,当电流通过线圈时,将产生磁通,是一种抵抗电流变化、储存磁能的部件。(t)=N(t)下页上页返回1.定义电感元件储存磁能的两端元件。任何时刻,其特性可用~i平面上的一条曲线来描述。0),(ifi下页上页o返回任何时刻,通过电感元件的电流i与其磁链成正比。~i特性为过原点的直线。2.线性时不变电感元件)()(tLitio下页上页taniL返回电路符号H(亨利),常用H,mH表示。+-u(t)iL单位下页上页电感器的自感1H=103mH1mH=103H返回ttiLttud)(ddd)(3.线性电感的电压、电流关系u、i取关联参考方向电感元件VCR的微分关系+-u(t)iL根据电磁感应定律与楞次定律下页上页返回ttiLtud)(d)(①电感电压u的大小取决于i的变化率,与i的大小无关,电感是动态元件;②当i为常数(直流)时,u=0。电感相当于短路;③实际电路中电感的电压u为有限值,则电感电流i不能跃变,必定是时间的连续函数.+-u(t)iL下页上页表明返回d1)(tξuLti电感元件VCR的积分关系下页上页00d1d1tttξuLξuL)(00d1ttξuLit表明①某一时刻的电感电流值与-到该时刻的所有电压值有关,即电感元件有记忆电压的作用,电感元件也是记忆元件。②研究某一初始时刻t0以后的电感电流,不需要了解t0以前的电流,只需知道t0时刻开始作用的电压u和t0时刻的电流i(t0)。返回下页上页注意①当电感的u,i为非关联方向时,上述微分和积分表达式前要冠以负号;tiLddu)()(i00)d1(ttξuLitt②上式中i(t0)称为电感电流的初始值,它反映电感初始时刻的储能状况,也称为初始状态。返回下页上页4.电感的功率和储能功率itiLuipddu、i取关联参考方向①当电流增大,p0,电感吸收功率。②当电流减小,p0,电感发出功率。电感能在一段时间内吸收外部供给的能量转化为磁场能量储存起来,在另一段时间内又把能量释放回电路,因此电感元件是无源元件、是储能元件,它本身不消耗能量。表明返回从t0到t电感储能的变化量:)(21)(21022tLitLiWLttLLiξξiLiW)ξ(21ddd2电感的储能下页上页)(212tLi)(21)(2122LitLi返回①电感的储能只与当时的电流值有关,电感电流不能跃变,反映了储能不能跃变。②电感储存的能量一定大于或等于零。0)(212tLiWL下页上页表明返回实际电感线圈的模型下页上页L+-uG+-u(t)iL+L-uGC返回下页上页贴片型功率电感贴片电感返回下页上页贴片型空心线圈可调式电感环形线圈立式功率型电感返回下页上页电抗器返回下页上页6.3电容、电感元件的串联与并联1.电容的串联u1uC2C1u2+++--itξξiCud)(111tξξiCud)(122tξξiCCuuud)()11(2121tξξiCd)(1等效电容返回下页上页C2121CCCCiu+-C等效u1uC2C1u2+++--i返回tξξiCud)(111下页上页tξξiCud)(122tξξiCud)(1uCCCuCCu21211uCCCuCCu21122iu+-Cu1uC2C1u2+++--i串联电容的分压返回C2121CCCC下页上页i2i1u+-C1C2ituCidd11tuCidd22tuCCiiidd)(2121tuCddCCC21iu+-C等效2.电容的并联等效电容返回下页上页i2i1u+-C1C2ituCidd11tuCidd22tuCiddiCCi11iCCi22iu+-C并联电容的分流返回3.电感的串联tiLudd11下页上页tiLtiLLuuudddd)(212121LLLu1uL2L1u2+++--iiu+-LtiLudd22等效等效电感返回uLLLuLLtiLu211111dd下页上页uLLLuLLtiLu212222ddu1uL2L1u2+++--iiu+-L等效串联电感的分压返回tξξuLid)(111下页上页u+-L1L2i2i1iu+-L等效tξξuLid)(122tξξuLLiiid)(111121tξξuLd)(1212111111LLLLLLL4.电感的并联等效电感返回iLξξutd)(下页上页212111d)(1LLiLiLLξξuLit211222d)(1LLiLiLLξξuLitu+-L1L2i2i1iu+-L等效并联电感的分流返回下页上页注意以上虽然是关于两个电容或两个电感的串联和并联等效,但其结论可以推广到n个电容或n个电感的串联和并联等效。返回电容元件与电感元件的比较:电容C电感L变量电流i磁链关系式电压u电荷q(1)元件方程的形式是相似的;(2)若把u-i,q-,C-L,i-u互换,可由电容元件的方程得到电感元件的方程;(3)C和L称为对偶元件,、q等称为对偶元素。*显然,R、G也是一对对偶元素:I=U/RU=I/GU=RII=GU222121LLiWtiLuLiLdd结论222121ddqCCuWtuCiCuqC
本文标题:大物电磁学-第六章-动态电路
链接地址:https://www.777doc.com/doc-5804068 .html