您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 第8章-往复式压缩机
第8章往复式压缩机8.1往复式压缩机的基本组成及工作原理往复式压缩机又称活塞式压缩机,是容积型压缩机的一种。它是依靠气缸内活塞的往复运动来压缩缸内气体,从而提高气体压力,达到工艺要求。往复式压缩机的结构见图8-1。图8-12D6.5-7.2/150型压缩机1-Ⅲ段气缸;2-Ⅲ段组合气阀;3-Ⅰ-Ⅲ段活塞;4-Ⅰ段气缸;5-Ⅰ段填料盒;6-十字头;7-机体;8-连杆;9-曲轴;10-Ⅴ带轮;11-Ⅱ段填料盒;12-Ⅱ段气缸;13-Ⅱ-Ⅳ段活塞;14-Ⅳ段气缸;15-Ⅳ组合气阀;16-球面支承8.1.1往复往复式压缩机系统由驱动机、机体、曲轴、连杆、十字头、活塞杆、气缸、活塞和活塞环、填料、气阀、冷却器和油水分离器等所组成。驱动机驱动曲轴旋转,通过连杆、十字头和活塞杆带动活塞进行往复运动,对气体进行压缩,出口气体离开压缩机进入冷却器后,再进入油水分离器进行分离和缓冲,然后再依次进入下一级进行多级压缩。往复式压缩机结构示意图如图8-28.1.2往复式为了由浅入深的说明问题,假定压缩机没有余隙容积,没有进、排气阻力,没有热量交换等,这样,压缩机工作时,气缸内压力及容积变化的情况如图8-3。当活塞自点0向右移动至点1时,气缸在压力p1下等压吸进气体,0—1为进气过程。然后活塞向左移动,自1绝热压缩至2,1—2为绝热压缩过程。最后将压力为p2的气体等压排出气缸,2—3为排气过程。过程0—1—2—3—0图8-2往复式压缩机结构示意图1-排气阀;2-气缸;3-平衡缸;4-机体;5-飞轮;6-曲轴;7-轴承;8-连杆;9-十字头;10-活塞杆;11-填料函;12-活塞;13-活塞环;14-进气阀活塞从止点0至止点1所走的距离S,称为一个行程。在理论循环中,活塞一个行程所能吸进的气体,在压力p1状态下其值为V1=FsSm3,式中Fs为活塞面积,m2;S为活塞行程,m。图8-3压缩机级的理论循环压缩机把气体自低压空间压送到高压空间需要消耗一定的功,压缩机完成一个理论循环所消耗的功为图8-3的0—1—2—3—0所围区域的面积,即进气过程中气体对活塞所作的功p1V1相当于0—0′—1′—1—0所围的面积;压缩过程中活塞对气体所作的功相当于1′—1—2—2′—1′所围的面积。假定气体对活塞所作的功为负值,活塞对气体所作功为正值,则三者之和为即图8-3中0—1—2—3—0所围区域的面积。由于自1至2的压缩过程中,指数越小,过程曲线越平坦,因此可知过程指数越在压缩循环中,压缩过程中所消耗的外功将全部变成热量。在绝热压缩过程中,这些热量将全部转变为气体的内能,使气体温度升高,并全部被气体带出压缩机;在等温压缩循环中,等温压缩的功将变成热量,并通过气体全部传给了外界,气体排出压缩机时,温度没有什么改变;在多变压缩过程中,气体传出一部分热量,一部分热量变成气体内能被如果压缩机绝热循环及多变循环中排出的气体,再通入冷却器中等压冷却至气体吸入前的原始温度,则气体内能和气体进入压缩机前相同。必须指出,在这种情况下,虽然压缩气体所消耗的外功全部变成了热量。传给了外界,使气体的内能并无增加,8.1.3往复式图8-4是由指示器在实际机器某级上测得的压力容积变化曲线,通称级的指示图,即为压缩机的实际循环图。它与理论循环图8-3的区别是:有余隙容积V0的存在,使高压气体不可能全部排出气缸,在活塞改变行程后,出现了V0内高压气体的膨胀线;图8-4压缩机的实际循环吸气及排气过程中压力均非不变值,所以水平线变为波形内线;由于气阀及管道阻力损失的存在,使实际吸入压力线总低于名义吸入压力p1的水平线,排气压力线则高于名义排气压力p2;由于气体与缸壁等有热量交换,所以压缩及膨胀过程指数是一个始终变化的数值;除此之外还存在着气体的泄漏等。显然它影响了吸入气体量和耗功,既不像图8-3那样全部吸气行程都吸入气体,也不是只耗面积为1—2—3—0—1那么少的功。8.1.4往复往复式压缩机在正常运转时,作用于运动机构上的主要有惯性力、气体压力的作用力—1.压缩机中各运动零件的运动若为不等速运动或旋转运动时,便会产生惯性力。惯性力的大小与方向决定于运动零件的质量和加速度,等于两者之乘积,其方向和加速2.气缸内的气体压力也是随着活塞的运动,即随着曲轴转角而变化的。作用在活塞3.相对运动表面互相作用的摩擦力,其方向始终与运动方向相反,其大小则随曲轴4.往复式压缩机运动件受力状况简图见图8-5。曲柄处于任意的转角α时,气体作用力Pg和往复惯性力I合成的活塞力P,作用在十字头销或活塞销A上,然后再沿着连杆传递过去。由于连杆是相对于气缸轴线摆动的,它和气缸轴线间摆动的夹角为β,故传递到连杆上点A的作用力PL=P/cosβ,式中P=Pg+I。同时,因为十字头是由十字头导轨导向的,也产生了一个压向十字头导轨的分力——侧向力N,N=Ptgβ。连杆力PL沿着连杆轴线传到曲柄销中心点B,它对曲轴产生两个作用,一个作用是连杆力相对于曲轴中心构成一个力矩my=PLh=PrN·m;另一个作用是使曲轴的主轴颈在主轴上产生一个作用力PL。PL可以分解为水平方向和垂直方向两个分力,垂直方向分力N=PLsinβ=Ptgβ,水平方向分力P=PLcosβ。此外主轴承上还作用有离心力Ir。5.作用在主轴承上的活塞力P,其中的气体力部分Pg已在机器内部平衡掉、余下的往复惯性力部分I却未被平衡掉,它要通过主轴承及机体传到机器外面的基础上。由sin(α+β)cosβ图8-5作用力分析于往复惯性力I的方向和数值随着曲轴转角周期地变化,因而能够引起机器及基础的振动。此外,还有数值不变但作用线方向随曲轴转角周期地改变的旋转惯性力Ir也作用在主轴承上,也会引起机器作相应的振动。过大的振动能使基础产生不均衡的沉降,影响厂房寿命,影响操作人员的健康,影响附近地区精密器械的操作,此外,振动还会无谓地消耗能量,严重时能达到压缩机总功的5%采用增大基础的办法来减少振动需要增加基建费用,消耗大量的物力和人力,因此我们应尽量设法在机器内部把惯性力平衡掉。不平衡旋转质量所造成的离心力Ir的平衡比较简单,只要在曲柄的相反方向装上适当的平衡重量,使两者所造成的离心力互相抵消即可。往复惯性力的平衡比较复杂,在单列压缩机中,往复惯性力是无法简单地予以平衡的。但是,用加平衡重的方法,可以改变一阶惯性力的方向,使其从沿着气缸轴线的方向转移到气缸轴线垂直的方向,原来的二阶往复惯性力I2则仍保持原状。在单列的卧式压缩机中,我们经常利用上述方法,将水平方向的一阶往复惯性力I1的30%~50%转移至垂直方向,以期减轻水平方向上机器的振动。在多列压缩机中,可以使往复惯性力在机器内部彼此间得到部分的或全部的平衡。平衡方法的原则:一种是利用惯性力本身的特点,使各列的曲轴错角合理地配置,使惯性力互相抵消;另一种是在同一曲拐上配置几列,各列轴线间夹角合理地配置,使各列惯性力的合力为某一不变的数值,且始终作用在曲柄方向。这样,就可以利用加平衡重的办法来平衡它。8.2往复式压缩机的分类1.(1)低压压缩机0.2<P<0.98MPa(2)中压压缩机0.98~9.8MPa(3)高压压缩机9.8~98.0MPa(4)超高压压缩机>98.0MPa2.(1)微型压缩机<10kW(2)小型压缩机10~100kW(3)中型压缩机100~500kW(4)大型压缩机>500kW3.安(1)微型压缩机<1m3/min(2)小型压缩机1~10m3/min(3)中型压缩机10~60m3/min(4)大型压缩机>60m3/min4.按气缸中心线的相对位置分类见图8-6。图8-6气缸中心线位置分类(a)立式;(b)一般卧式;(c)对称平衡式或对动式;(d)V型角度式;(e)L型角度式;(f)W型角度式;(g)T型角度式;(h)、(i)扇型角度式;(j)星型角度式(1)(2)卧式:气缸中心线与地面平行,其中包括一般卧式、对置式和对动式(对置平(3)角度式:气缸中心线彼此成一定角度,其中包括L型、V型、W型、扇型和星型等。5.按曲柄连杆机构分类6.(1)(2)(3)7.(1)(2)(3)8.按压缩机(1)(2)(3)9.按冷却方式分类10.按机器工作地点分类8.3往复式压缩机的技术参数1.排气量往复式压缩机的排气量,通常是指单位时间内压缩机最后一级排出的气体,换算到第一级进口状态的压力和温度时的气体容积值,排气量常用的单位为m3/min或m3/h。压缩机的额定排气量(压缩机铭牌上标注的排气量),是指特定的进口状态时的排2.排气压力往复式压缩机的排气压力通常是指最终排出压缩机的气体压力,排气压力应在压缩机末级排气接管处测量,常用单位为MPa一台压缩机的排气压力并非固定,压缩机铭牌上标注的排气压力是指额定排气压力,实际上,压缩机可在额定排气压力以下的任意压力下工作,并且只要强度和排气温度等允许,也可超过额定排气压力工作。3.转速往复式压缩机曲轴的转速,常用r/min表示,它是表示往复式压缩机的主要结构4.活塞力活塞力为曲轴处于任意的转角时,气体力和往复惯性力的合力,它作用于活塞杆或活塞销上。活塞力已成为压缩机系列化、规格化的一个主要参数,常用单位为t(吨)。我国推荐的系列为1、2、3.5、5、5.5、8、12、15、22、32和45(t)。5.活塞行程往复式压缩机在运转中,活塞从一端止点到另一端止点所走的距离,称为一个行程,常用单位为m(米)。6.功率往复式压缩机消耗的功,一部分直接用于压缩气体,称为指示功,另一部分用于克服机械摩擦,称为摩擦功,主轴需要的总功为两者之和,称为轴功。单位时间内消耗的功称为功率,常用单位为瓦(W)或千瓦(kW)。压缩机的轴功率为指示功率和摩擦功率之和。8.4往复式压缩机的运行及调节1.选用压缩机的条件之一就是用气系统的最大耗气量。系统的实际耗气量是可能变化的。当耗气量小于压缩机的排气量时,系统中压力不断提高。由于往复式压缩机的排气量不会因背压的升高而自动降低,此时,若不采取措施减少排气量,系统压力将会达到不允许的程度,这就要求对压缩机的排气量进行调节,以适应变化了的耗气量对排气量调节的要求是:①连续调节,即希望压缩机的排气量在所需的调节范围内连续地改变,使排气量随时和耗气量相等。通过压缩机排气和不排气进行的调节称为间断调节;②调节方法经济性好,即调节时,单位排气量功耗要少;③调节系统结构简单、安全可靠、操作维修方便。1)(1)连续地变速调节不计泄漏时,压缩机的排气量就是每单位时间内吸入的气体体积量。它与转速有关,要求减少排气量时,可用降低单位时间内的循环数,即降低(2)间断地停转调节当压缩机用不可变速驱动机驱动时,采用压缩机暂时停止运转的办法来调节排气量。当耗气量小于压缩机的排气量时,压缩机出口储气罐压力升高。当压力上升到规定的上限时,压力继电器切断驱动机电源,使驱动机停止运转。这时储气罐耗气而压力下降,当压力降低到规定的下限时,压力继电器接通电源,压该方法的优点是:易于实现自动控制、停转后不消耗动力、经济性好。缺点是频繁启动、停机,增加零部件的磨损,启动动力消耗大。如有较大的储气罐,可减少启2)(1)切断吸气调节对于大、中型压缩机采用频繁的停转调节是不允许的。这时,可以利用专门阀门切断吸气管路,使排气量为零,得到间断调节。此时功率消耗约为正常工况指示功率消耗的2%~3%。这种调节方法的特点是气缸停止吸气期间,缸内气体几乎不消耗活塞的机械功。缺点是缸内气体温度过高,可能引起润滑油的热分解;对单作用压缩机,缸内气体压力降到大气压力以下时,可能从活塞环处向缸内吸进空气和润滑油,这对一些不允许和空气混合的气体压缩机,应禁止采用这种调节方法。(2)节流吸气调节在压缩机的进气管路上装节流阀,使吸入气缸的气体节流降压,减少排气量。这种调节方法的优点是可以实现无级调节。缺点是节流程度不大时,(3)回流调节回流调节即吸、排气管连通调节。在压缩机的排气管路上装设旁通管,并与吸气管相连。在旁通管路上安装阀门。当需要降低压缩机的供气量时,打开旁通管路上的阀门,一部分或全部排出的气体便又回到吸气管路中,这样就达到了排3
本文标题:第8章-往复式压缩机
链接地址:https://www.777doc.com/doc-5873278 .html