您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 一定是直角三角形吗1北师大版八年级上册数学教案
1.2一定是直角三角形吗1.掌握勾股定理的逆定理,并能进行简单应用;(难点)2.理解勾股数的定义,探索常用勾股数的规律.(重点)一、情境导入1.直角三角形中,三边长度之间满足什么样的关系?2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?二、合作探究探究点一:勾股定理的逆定理【类型一】判断三角形的形状判断满足下列条件的三角形是否是直角三角形.(1)在△ABC中,∠A=20°,∠B=70°;(2)在△ABC中,AC=7,AB=24,BC=25;(3)△ABC的三边长a、b、c满足(a+b)(a-b)=c2.解析:(1)已知两角可以求出另外一个角;(2)使用勾股定理的逆定理验证;(3)将式子变形即可使用勾股定理的逆定理验证.解:(1)在△ABC中,∵∠A=20°,∠B=70°,∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形;(2)∵AC2+AB2=72+242=625,BC2=252=625,∴AC2+AB2=BC2.根据勾股定理的逆定理可知,△ABC是直角三角形;(3)∵(a+b)(a-b)=c2,∴a2-b2=c2,即a2=b2+c2.根据勾股定理的逆定理可知,△ABC是直角三角形.方法总结:在运用勾股定理的逆定理时,要特别注意找到最大边,定理描述的最大边的平方等于另外两边的平方和.【类型二】判断线段之间的位置关系在正方形ABCD中,F是CD的中点,E为BC上一点,且CE=14CB,试判断AF与EF的位置关系,并说明理由.解析:观察图形并加以合理的推测,不难发现AF⊥EF.解:AF⊥EF.设正方形的边长为4a,则EC=a,BE=3a,CF=DF=2a.在Rt△ABE中,由勾股定理得AE2=AB2+BE2=16a2+9a2=25a2.在Rt△CEF中,由勾股定理得EF2=CE2+CF2=a2+4a2=5a2.在Rt△ADF中,由勾股定理得AF2=AD2+DF2=16a2+4a2=20a2.在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为斜边.∴∠AFE=90°,即AF⊥EF.方法总结:利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.探究点二:勾股数下列几组数中是勾股数的是________(填序号).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①组不符合勾股数的定义,不是勾股数;第③④组不是正整数,不是勾股数;只有第②组的9,40,41是勾股数.故填②.方法总结:判断勾股数的方法:必须满足两个条件:一要符合等式a2+b2=c2;二要都是正整数.三、板书设计勾股定理的逆定理:如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.
本文标题:一定是直角三角形吗1北师大版八年级上册数学教案
链接地址:https://www.777doc.com/doc-5875117 .html