您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 用因式分解法求解一元二次方程1北师大版九年级上册数学教案
2.4用因式分解法求解一元二次方程1.了解因式分解法的解题步骤,能用因式分解法解一元二次方程;(重点)2.能根据具体一元二次方程的特征,灵活选择方程的解法.(难点)一、情景导入王庄村在测量土地时,发现了一块正方形的土地和一块矩形的土地,矩形土地的宽和正方形的边长相等,矩形土地的长为80m,工作人员说,正方形土地的面积是矩形面积的一半.你能帮助工作人员计算一下正方形土地的面积吗?二、合作探究探究点一:用因式分解法解一元二次方程方程(x-3)(x+1)=x-3的解是()A.x=0B.x=3C.x=3或x=-1D.x=3或x=0解析:把(x-3)看成一个整体,利用因式分解法解方程,原方程变形,得(x-3)(x+1)-(x-3)=0,所以(x-3)(x+1-1)=0,即x-3=0或x=0,所以原方程的解为x1=3,x2=0.故答案为D.易错提醒:解形如ax2=bx的方程,千万不可以在方程的两边同时除以x,得到x=ba,这样会产生丢根现象,只能提公因式,得到x1=0,x2=ba.如本题中易出现在方程两边同除以(x-3),从而得到x=0的错误.探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.三、板书设计用因式分解法求解一元二次方程步骤①移项,将方程的右边化为0②把方程的左边分解成两个一次因式的积③令每个因式分别等于0,得到两个一元一次方程④解这两个一元一次方程选用适当的方法解一元二次方程经历因式分解法解一元二次方程的探索过程,发展学生合情合理的推理能力.积极探索方程不同的解法,体验解决问题方法的多样性.通过交流发现最优解法,在学习活动中获得成功的体验.
本文标题:用因式分解法求解一元二次方程1北师大版九年级上册数学教案
链接地址:https://www.777doc.com/doc-5875591 .html