您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 弧长及扇形的面积北师大版九年级下册数学课件
3.9弧长及扇形的面积导入新课讲授新课当堂练习课堂小结第三章圆1.理解弧长和扇形面积公式的探求过程.(难点)2.会利用弧长和扇形面积的计算公式进行计算.(重点)学习目标问题1你注意到了吗,在运动会的4×100米比赛中,各选手的起跑线不再同一处,你知道这是为什么吗?问题2怎样来计算弯道的“展直长度”?因为要保证这些弯道的“展直长度”是一样的.导入新课情境引入接力赛跑.mp4(1)半径为R的圆,周长是多少?(2)1°的圆心角所对弧长是多少?n°O(4)n°的圆心角所对弧长l是多少?1°C=2πR(3)n°圆心角所对的弧长是1°圆心角所对的弧长的多少倍?n倍讲授新课弧长的计算一2360180RR180nRl合作探究(1)用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.(2)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等弧,而只有在同圆或等圆中,才可能是等弧.注意2360180nnRlR弧长公式要点归纳半径为R的圆中,n°的圆心角所对的弧长l为180nrl例1制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)解:由弧长公式,可得AB的长1009005001570(mm),180180nR因此所要求的展直长度l=2×700+1570=2970(mm).答:管道的展直长度为2970mm.100°ACBDO典例精析(1.已知扇形的圆心角为60°,半径为1,则扇形的弧长为.2.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为.3163120针对训练3.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则弧AC的长为_________.2πS=πR2(2)圆心角为1°的扇形的面积是多少?(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积的多少倍?n倍(4)圆心角为n°的扇形的面积是多少?思考(1)半径为R的圆,面积是多少?2360R2360nR合作探究扇形面积的计算二扇形面积公式如果扇形的半径为R,圆心角为n°,那么扇形面积的计算公式为①公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;②公式要理解记忆(即按照上面推导过程记忆).注意2=360nRS扇形要点归纳问题:扇形的弧长公式与面积公式有联系吗?想一想扇形的面积公式与什么公式类似?11180221802nrrnrSrlr扇形ABOO类比学习180nrl2=360nrS扇形例1如图,已知圆O的半径1.5cm,圆心角∠AOB=58o,求AB的长(结果精确到0.1cm)扇形OAB的面积(结果精确到0.1cm2).58oOAB解∵r=1.5cm,n=58,∴AB的长=222581.5583.141.5=1.1(cm).360360S扇形OAB典例精析((581.5583.141.51.5(cm).180180AB的长也可表示为ABl.((1.扇形的弧长和面积都由______________________决定.扇形的半径与扇形的圆心角2.已知扇形的圆心角为120°,半径为2,则这个扇形的面积S扇=.43针对训练3.已知半径为2cm的扇形,其弧长为,则这个扇形的面积S扇=.4324cm3例2如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm)(1)O.BAC讨论:(1)截面上有水部分的面积是指图上哪一部分?阴影部分.典例精析O.BACD(2)O.BACD(3)(2)水面高0.3m是指哪一条线段的长?这条线段应该怎样画出来?线段DC.过点O作OD垂直符号于AB并长交圆O于C.(3)要求图中阴影部分面积,应该怎么办?阴影部分面积=扇形OAB的面积-△OAB的面积解:如图,连接OA,OB,过点O作弦AB的垂线,垂足为D,交AB于点C,连接AC.∵OC=0.6,DC=0.3,∴OD=OC-DC=0.3,∴OD=DC.又AD⊥DC,∴AD是线段OC的垂直平分线,∴AC=AO=OC.从而∠AOD=60˚,∠AOB=120˚.O.BACD(3)有水部分的面积:S=S扇形OAB-SΔOAB22120π10.6360210.12π0.630.320.22(m)ABODOBACD(3)•左图:S弓形=S扇形-S三角形•右图:S弓形=S扇形+S三角形OO弓形的面积=扇形的面积±三角形的面积知识拓展弓形面积公式3.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则弧BC的长为__________(结果保留π).π324.如图,半径为1cm、圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()CA.πcm2B.πcm2C.cm2D.cm22312237733847338433CA.B.C.D.5.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=2,O、H分别为AB、AC的中点,将△ABC顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过的面积为()ABCOHC1A1H1O16.如图,⊙A、⊙B、⊙C、⊙D两两不相交,且半径都是2cm,则图中阴影部分的面积是.212cmABCD解析:连接OB、OC,∵AB是⊙O的切线,∴AB⊥BO.∵∠A=30°,∴∠AOB=60°.∵BC∥AO,∴∠OBC=∠AOB=60°.在等腰△OBC中,∠BOC=180°-2∠OBC=180°-2×60°=60°.∴BC的长为=2π(cm).故答案为2π.7.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO.若∠A=30°,则劣弧BC的长为________cm.︵︵6061802π8.一个扇形的弧长为20πcm,面积是240πcm2,则该扇形的圆心角为多少度?解:设扇形半径为R,圆心角为n0,由扇形公式答:该扇形的圆心角为150度.(cm)12SlR扇形可得:222402420SRl扇形1801802015024lnR:180nRl由得9.如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.OABDCE22=24010.60.30.6336020.240.0930.91cm.OABSS△扇形弓形的面积弧长计算公式:180nRl扇形公式2360nRS扇形12SlR扇形阴影部分面积求法:整体思想弓形公式S弓形=S扇形-S三角形S弓形=S扇形+S三角形割补法课堂小结见《学练优》本课时练习课后作业更多精彩内容,微信扫描二维码获取扫描二维码获取更多资源
本文标题:弧长及扇形的面积北师大版九年级下册数学课件
链接地址:https://www.777doc.com/doc-5875952 .html