您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高中数学331函数的单调性与导数教案新人教A版选修11
甘肃省金昌市第一中学2014年高中数学3.3.1函数的单调性与导数教案新人教A版选修1-1了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会利用导数求函数的单调区间。2、过程与方法通过本节的学习,掌握用导数研究函数单调性的方法。3、情感、态度与价值观通过实例探究函数的单调性与导数的关系。通过这一过程,提高理性思维的能力。教学重难点重点:函数单调性和导数的关系;会根据导数判断函数的单调性;会利用导数求出函数的单调区间。难点:理解并掌握函数的单调性与导数的关系教学过程一、复习引入:1.常见函数的导数公式:0'C;1)'(nnnxx;xxcos)'(sin;xxsin)'(cos奎屯王新敞新疆xx1)'(ln奎屯王新敞新疆exxaalog1)'(log奎屯王新敞新疆xxee)'(奎屯王新敞新疆aaaxxln)'(2.法则1)()()]()(['''xvxuxvxu.法则2[()()]'()()()'()uxvxuxvxuxvx,[()]'()CuxCux奎屯王新敞新疆法则3'2''(0)uuvuvvvv奎屯王新敞新疆二、讲授新课1.问题:图3.3-1(1),它表示跳水运动中高度h随时间t变化的函数2()4.96.510httt的图像,图3.3-1(2)表示高台跳水运动员的速度v随时间t变化的函数'()()9.86.5vthtt的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度h随时间t的增加而增加,即()ht是增函数.相应地,'()()0vtht.(2)从最高点到入水,运动员离水面的高度h随时间t的增加而减少,即()ht是减函数.相应地,'()()0vtht.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.3.3-3,导数'0()fx如图表示函数()fx在点00(,)xy处的切线的斜率.在0xx处,'0()0fx,切线是“左下右上”式的,这时,函数()fx在0x附近单调递增;在1xx处,'0()0fx,切线是“左上右下”式的,这时,函数()fx在1x附近单调递减.结论:函数的单调性与导数的关系在某个区间(,)ab内,如果'()0fx,那么函数()yfx在这个区间内单调递增;如果'()0fx,那么函数()yfx在这个区间内单调递减.说明:(1)特别的,如果'()0fx,那么函数()yfx在这个区间内是常函数.3.求解函数()yfx单调区间的步骤:(1)确定函数()yfx的定义域;(2)求导数''()yfx;(3)解不等式'()0fx,解集在定义域内的部分为增区间;(4)解不等式'()0fx,解集在定义域内的部分为减区间.三.典例分析例1.已知导函数'()fx的下列信息:当14x时,'()0fx;当4x,或1x时,'()0fx;当4x,或1x时,'()0fx试画出函数()yfx图像的大致形状.解:当14x时,'()0fx,可知()yfx在此区间内单调递增;当4x,或1x时,'()0fx;可知()yfx在此区间内单调递减;当4x,或1x时,'()0fx,这两点比较特殊,我们把它称为“临界点”.综上,函数()yfx图像的大致形状如图3.3-4所示.例2.判断下列函数的单调性,并求出单调区间.(1)3()3fxxx;(2)2()23fxxx(3)()sin(0,)fxxxx;(4)32()23241fxxxx解:(1)因为3()3fxxx,所以,'22()333(1)0fxxx因此,3()3fxxx在R上单调递增,如图(1)所示.3.3-5(2)因为2()23fxxx,所以,'()2221fxxx当'()0fx,即1x时,函数2()23fxxx单调递增;当'()0fx,即1x时,函数2()23fxxx单调递减;函数2()23fxxx的图像如图3.3-5(2)所示.(3)因为()sin(0,)fxxxx,所以,'()cos10fxx因此,函数()sinfxxx在(0,)单调递减,如图3.3-5(3)所示.(4)因为32()23241fxxxx,所以.当'()0fx,即时,函数2()23fxxx;当'()0fx,即时,函数2()23fxxx;函数32()23241fxxxx的图像如图3.3-5(4)所示.注:(3)、(4)生练例3.如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.解:1,2,3,4BADC思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如图3.3-7所示,函数()yfx在0,b或,0a内的图像“陡峭”,在,b或,a内的图像“平缓”.例4.求证:函数3223121yxxx在区间2,1内是减函数.证明:因为'22661262612yxxxxxx当2,1x即21x时,'0y,所以函数3223121yxxx在区间2,1内是减函数.说明:证明可导函数fx在,ab内的单调性步骤:(1)求导函数'fx;(2)判断'fx在,ab内的符号;(3)做出结论:'0fx为增函数,'0fx为减函数.例5.已知函数232()4()3fxxaxxxR在区间1,1上是增函数,求实数a的取值范围.解:'2()422fxaxx,因为fx在区间1,1上是增函数,所以'()0fx对1,1x恒成立,即220xax对1,1x恒成立,解之得:11a所以实数a的取值范围为1,1.说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0fx;若函数单调递减,则'()0fx”来求解,注意此时公式中的等号不能省略,否则漏解.例6.已知函数y=x+x1,试讨论出此函数的单调区间.解:y′=(x+x1)′=1-1·x-2=222)1)(1(1xxxxx令2)1)(1(xxx>0.解得x>1或x<-1.∴y=x+x1的单调增区间是(-∞,-1)和(1,+∞).令2)1)(1(xxx<0,解得-1<x<0或0<x<1.∴y=x+x1的单调减区间是(-1,0)和(0,1)奎屯王新敞新疆四、课堂练习:1.确定下列函数的单调区间(1)y=x3-9x2+24x(2)y=3x-x3(1)解:y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)令3(x-2)(x-4)>0,解得x>4或x<2.∴y=x3-9x2+24x的单调增区间是(4,+∞)和(-∞,2)令3(x-2)(x-4)<0,解得2<x<4.∴y=x3-9x2+24x的单调减区间是(2,4)(2)解:y′=(3x-x3)′=3-3x2=-3(x2-1)=-3(x+1)(x-1)令-3(x+1)(x-1)>0,解得-1<x<1.∴y=3x-x3的单调增区间是(-1,1).令-3(x+1)(x-1)<0,解得x>1或x<-1.∴y=3x-x3的单调减区间是(-∞,-1)和(1,+∞)2、设)x(fy是函数)x(fy的导数,)x(fy的图象如图所示,则)x(fy的图象最有可能是()小结:重点是抓住导函数的图象与原函数的图象从哪里发生联系?五、课堂小结:1.函数导数与单调性的关系:若函数y=f(x)在某个区间内可导,如果f′(x)0,则f(x)为增函数;如果f′(x)0,则f(x)为减函数.2.本节课中,用导数去研究函数的单调性是中心,能灵活应用导数解题是目的,另外应注意数形结合在解题中的应用.3.掌握研究数学问题的一般方法:从特殊到一般,从简单到复杂.六、课后作业:课本习题3.3A组1,2【思考题】对于函数f(x)=2x3-6x2+7思考1、能不能画出该函数的草图?思考2、3276xx在区间(0,2)内有几个解?1.确定下列函数的单调区间(1)2yxx(2)3yxx2.讨论二次函数y=ax2+bx+c(a>0)的单调区间.
本文标题:高中数学331函数的单调性与导数教案新人教A版选修11
链接地址:https://www.777doc.com/doc-5887427 .html