您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 高二数学课件椭圆的标准方程高二数学课件
天体的运行如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?生活中的椭圆一.课题引入:椭圆的画法注意:椭圆定义中容易遗漏的三处地方:(1)必须在平面内;(2)两个定点---两点间距离确定;(3)绳长---轨迹上任意点到两定点距离和确定.PF2F11.椭圆定义:平面内与两个定点的距离和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.12,FF12||FF二.讲授新课:思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段);两定点间距离较短,则所画出的椭圆较圆(圆).由此可知,椭圆的形状与两定点间距离、绳长有关.♦求动点轨迹方程的一般步骤:(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件P(M);(3)用坐标表示条件P(M),列出方程;(4)化方程为最简形式;(5)证明以化简后的方程为所求方程(可以省略不写,如有特殊情况,可以适当予以说明)坐标法♦探讨建立平面直角坐标系的方案建立平面直角坐标系通常遵循的原则:对称、“简洁”OxyOxyOxyMF1F2方案一F1F2方案二OxyMOxy2.求椭圆的方程:解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图).设M(x,y)是椭圆上任意一点,椭圆的焦距2c(c0),M与F1和F2的距离的和等于正常数2a(2a2c),则F1、F2的坐标分别是(c,0)、(c,0).xF1F2M0y(问题:下面怎样化简?)aMFMF2||||21222221)(||,)(||ycxMFycxMFaycxycx2)()(2222得方程由椭圆的定义得,限制条件:代入坐标222222bayaxb22ba两边除以得).0(12222babyax设所以即,0,,2222cacaca),0(222bbca由椭圆定义可知整理得2222222)()(44)(ycxycxaaycx222)(ycxacxa2222222222422yacacxaxaxccxaa两边再平方,得)()(22222222caayaxca移项,再平方)0(12222babxay总体印象:对称、简洁,“像”直线方程的截距式012222babyax焦点在y轴:焦点在x轴:3.椭圆的标准方程:1oFyx2FMaycxycx2)()(2222axcyxcy2)()(222212yoFFMx012222babyax012222babxay图形方程焦点F(±c,0)F(0,±c)a,b,c之间的关系c2=a2-b2|MF1|+|MF2|=2a(2a2c0)定义12yoFFMx1oFyx2FM注:共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭圆;方程的左边是平方和,右边是1.2x2y不同点:焦点在x轴的椭圆项分母较大.焦点在y轴的椭圆项分母较大.例1、已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆,它的焦距为2.4m,外轮廓线上的点到两个焦点距离的和为3m,求这个椭圆的标准方程.xyOF1F211625)2(22yx11)3(2222mymx11616)1(22yx0225259)4(22yx123)5(22yx11624)6(22kykx练习1.下列方程哪些表示椭圆?22,ba若是,则判定其焦点在何轴?并指明,写出焦点坐标.?练习2.求适合下列条件的椭圆的标准方程:(2)焦点为F1(0,-3),F2(0,3),且a=5;2212516yx2216xy(1)a=,b=1,焦点在x轴上;6(3)两个焦点分别是F1(-2,0)、F2(2,0),且过P(2,3)点;(4)经过点P(-2,0)和Q(0,-3).2211612xy22xy+=149小结:求椭圆标准方程的步骤:①定位:确定焦点所在的坐标轴;②定量:求a,b的值.练习3.已知椭圆的方程为:,请填空:(1)a=__,b=__,c=__,焦点坐标为___________,焦距等于__.(2)若C为椭圆上一点,F1、F2分别为椭圆的左、右焦点,并且CF1=2,则CF2=___.1162522yx变式:若椭圆的方程为,试口答完成(1).14491622yx5436(-3,0)、(3,0)8116922yx练习4.已知方程表示焦点在x轴上的椭圆,则m的取值范围是.22xy+=14m(0,4)变1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是.22xy+=1m-13-m(1,2)变2:方程,分别求方程满足下列条件的m的取值范围:①表示一个圆;②表示一个椭圆;③表示焦点在x轴上的椭圆。1m16ym25x22=++-yxo例2、将圆上的点的横坐标保持不变,纵坐标变为原来的一半,求所的曲线的方程,并说明它是什么曲线?422yx1)将圆按照某个方向均匀地压缩(拉长),可以得到椭圆;2)利用中间变量求点的轨迹方程的方法是解析几何中常用的方法。例3.已知圆A:(x+3)2+y2=100,圆A内一定点B(3,0),动圆P过B点且与圆A内切,求动圆心P的轨迹方程.2212516xy三、回顾小结:求椭圆标准方程的方法一种方法:二类方程:三个意识:求美意识,求简意识,前瞻意识12222byax012222babxay已知椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点。今有一个水平放置的台球盘,点A、B是它的两个焦点,焦距是2c,椭圆上的点到A、B的距离的和为2a,当静放在A的小球(半径不计)沿直线出发,经椭圆壁反弹后再回到点A时,求小球经过的路程。
本文标题:高二数学课件椭圆的标准方程高二数学课件
链接地址:https://www.777doc.com/doc-5888205 .html