您好,欢迎访问三七文档
蒙特卡罗方法一、蒙特卡罗方法概述蒙特·卡罗方法(MonteCarlomethod),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大区别。它是以概率统计理论为基础的一种方法。由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。1.历史起源蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的MonteCarlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡罗方法就已经存在。1777年,法国Buffon提出用投针实验的方法求圆周率∏。这被认为是蒙特卡罗方法的起源。2.蒙特卡罗方法的基本思想二十世纪四十年代中期,由于科学技术的发展和电子计算机的发明,蒙特卡罗方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。但其基本思想并非新颖,人们在生产实践和科学试验中就已发现,并加以利用。当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。这就是蒙特卡罗方法的基本思想。当随机变量的取值仅为1或0时,它的数学期望就是某个事件的概率。或者说,某种事件的概率也是随机变量(仅取值为1或0)的数学期望。因此,可以通俗地说,蒙特卡罗方法是用随机试验的方法计算积分,即将所要计算的积分看作服从某种分布密度函数f(r)的随机变量g(r)的数学期望通过某种试验,得到N个观察值r1,r2,…,rN(用概率语言来说,从分布密度函数f(r)中抽取N个子样r1,r2,…,rN,),将相应的N个随机变量的值g(r1),g(r2),…,g(rN)的算术平均值作为积分的估计值(近似值)。为了得到具有一定精确度的近似解,所需试验的次数是很多的,通过人工方法作大量的试验相当困难,甚至是不可能的。因此,蒙特卡罗方法的基本思想虽然早已被人们提出,却很少被使用。本世纪四十年代以来,由于电子计算机的出现,使得人们可以通过电子计算机来模拟随机试验过程,把巨大数目的随机试验交由计算机完成,使得蒙特卡罗方法得以广泛0)()()(drrfrggENiiNrgNg1)(1地应用,在现代化的科学技术中发挥应有的作用。经经典典算算例例及及计算机模拟试验过程例1.蒲丰氏问题为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a(l<a)的平行线相交的频率代替概率P,再利用准确的关系式求出π值其中N为投计次数,n为针与平行线相交次数。这就是古典概率论中著名的蒲丰氏问题。解:设针投到地面上的位置可以用一组参数(x,θ)来描述,x为针中心的坐标,θ为针与平行线的夹角,如图所示。任意投针,就是意味着x与θ都是任意取的,但x的范围限于[0,a],夹角θ的范围限于[0,π]。在此情况下,针与平行线相交的数学条件是如何产生任意的(x,θ)?x在[0,a]上任意取值,表示x在[0,a]上是均匀分布的,其分布密度函数为:类似地,θ的分布密度函数为:针在平行线间的位置alP2)(22nNalaPlsinlx其他,00,/1)(1axaxf其他,00,/1)(2f因此,产生任意的(x,θ)的过程就变成了由f1(x)抽样x及由f2(θ)抽样θ的过程了。由此得到:其中ξ1,ξ2均为(0,1)上均匀分布的随机变量。每次投针试验,实际上变成在计算机上从两个均匀分布的随机变量中抽样得到(x,θ),然后定义描述针与平行线相交状况的随机变量s(x,θ),为如果投针N次,则是针与平行线相交概率P的估计值。事实上,于是有二、蒙特卡罗方法的收敛性,误差蒙特卡罗方法作为一种计算方法,其收敛性与误差是普遍关心的一个重要问题。1、收敛性由前面介绍可知,蒙特卡罗方法是由随机变量X的简单子样X1,X2,…,XN的算术平均值:作为所求解的近似值。由大数定律可知,如X1,X2,…,XN独立同分布,且具有有限期望值(E(X)∞),则即随机变量X的简单子样的算术平均值,当子样数N充分大时,以概率1收敛于它的期望值E(X)。21ax其他,0sin当,1),(lxxsNiiiNxsNs1),(1aladxddxdfxfxsPl2)()(),(sin0021NsalaPl22NiiNXNX111)(limXEXPNNNX2、误差蒙特卡罗方法的近似值与真值的误差问题,概率论的中心极限定理给出了答案。该定理指出,如果随机变量序列X1,X2,…,XN独立同分布,且具有有限非零的方差σ2,即f(X)是X的分布密度函数。则当N充分大时,有如下的近似式其中α称为置信度,1-α称为置信水平。这表明,不等式近似地以概率1-α成立,且误差收敛速度的阶为。通常,蒙特卡罗方法的误差ε定义为上式中与置信度α是一一对应的,根据问题的要求确定出置信水平后,查标准正态分布表,就可以确定出。关于蒙特卡罗方法的误差需说明两点:第一,蒙特卡罗方法的误差为概率误差,这与其他数值计算方法是有区别的。第二,误差中的均方差σ是未知的,必须使用其估计值来代替,在计算所求量的同时,可计算出。3、减小方差的各种技巧显然,当给定置信度α后,误差ε由σ和N决定。要减小ε,或者是增大N,或者是减小方差σ2。在σ固定的情况下,要把精度提高一个数量级,试验次数N需增加两个数量级。因此,单纯增大N不是一个有效的办法。另一方面,如能减小估计的均方差σ,比如降低一半,那误差就减小一半,这相当于N增大四倍的效果。因此降低方差的各种技巧,引起了人们的普遍注意。后面课程将会介绍一些降低方差的技巧。4、效率一般来说,降低方差的技巧,往往会使观察一个子样的时间增加。在固定时间内,使观察的样本数减少。所以,一种方法的优劣,需要由方差和观察一个子样的费用(使用计算机的时间)两者来衡量。这就是蒙特卡罗方法中效率的概念。它定义为,其中c是观察一个子样的平均费用。显然越小,方法越有效。dxxfXEx)())((022dtexXEXNPxxtNN2/221)(lim122)(02/2dteNXEXPtNNXEXN)()(2/1NON2112)1(1ˆNiiNiiXNXNˆc2c2三、蒙特卡罗方法的特点1、能够比较逼真地描述具有随机性质的事物的特点及物理实验过程从这个意义上讲,蒙特卡罗方法可以部分代替物理实验,甚至可以得到物理实验难以得到的结果。用蒙特卡罗方法解决实际问题,可以直接从实际问题本身出发,而不从方程或数学表达式出发。它有直观、形象的特点。2、受几何条件限制小在计算s维空间中的任一区域Ds上的积分时,无论区域Ds的形状多么特殊,只要能给出描述Ds的几何特征的条件,就可以从Ds中均匀产生N个点得到积分的近似值。其中Ds为区域Ds的体积。这是数值方法难以作到的。另外,在具有随机性质的问题中,如考虑的系统形状很复杂,难以用一般数值方法求解,而使用蒙特卡罗方法,不会有原则上的困难。3、收敛速度与问题的维数无关由误差定义可知,在给定置信水平情况下,蒙特卡罗方法的收敛速度为,与问题本身的维数无关。维数的变化,只引起抽样时间及估计量计算时间的变化,不影响误差。也就是说,使用蒙特卡罗方法时,抽取的子样总数N与维数s无关。维数的增加,除了增加相应的计算量外,不影响问题的误差。这一特点,决定了蒙特卡罗方法对多维问题的适应性。而一般数值方法,比如计算定积分时,计算时间随维数的幂次方而增加,而且,由于分点数与维数的幂次方成正比,需占用相当数量的计算机内存,这些都是一般数值方法计算高维积分时难以克服的问题。4、具有同时计算多个方案与多个未知量的能力对于那些需要计算多个方案的问题,使用蒙特卡罗方法有时不需要像常规方法那样逐个计算,而可以同时计算所有的方案,其全部计算量几乎与计算一个方案的计算量相当。例如,对于屏蔽层为均匀介质的平板几何,要计算若干种厚度的穿透概率时,只需计算最厚的一种情况,其他厚度的穿透概率在计算最厚一种情况时稍加处理便可同时得到。另外,使用蒙特卡罗方法还可以同时得到若干个所求量。例如,在模拟粒子过程中,可以同时得到不同区域的通量、能谱、角分布等,而不像常规方法那样,需要逐一计算所求量。5、误差容易确定对于一般计算方法,要给出计算结果与真值的误差并不是一件容易的事情,而蒙特卡方法则不然。根据蒙特卡罗方法的误差公式,可以在计算所求量的同时计算出误差。对干很复杂的蒙特卡罗方法计算问题,也是容易确定的。一般计算方法常存在着有效位数损失问题,而要解决这一问题有时相当困难,蒙特卡罗方法则不存在这一问题。6、程序结构简单,易于实现在计算机上进行蒙特卡罗方法计算时,程序结构简单,分块性强,易于实现。7、缺点○1收敛速度慢。如前所述,蒙特卡罗方法的收敛速度为,一般不容得到精确度较高的近似结果。对于维数少(三维以下)的问题,不如其他方法好。○2误差具有概率性。由于蒙特卡罗方法的误差是在一定置信水平下估计的,所以它的误差具有概率性,而不是一般意义下的误差。○3在粒子输运问题中,计算结果与系统大小有关ssDdxdxdxxxxggs2121),,,(),,,()()(2)(1isiixxxNiisiisNxxxgNDg1)()(2)(1),,,()(2/1NO)(2/1NO经验表明,只有当系统的大小与粒子的平均自由程可以相比较时(一般在十个平均自由程左右),蒙特卡罗方法计算的结果较为满意。但对于大系统或小概率事件的计算问题,计算结果往往比真值偏低。而对于大系统,数值方法则是适用的。因此,在使用蒙特卡罗方法时,可以考虑把蒙特卡罗方法与解析(或数值)方法相结合,取长补短,既能解决解析(或数值)方法难以解决的问题,也可以解决单纯使用蒙特卡罗方法难以解决的问题。这样,可以发挥蒙特卡罗方法的特长,使其应用范围更加广泛。五、蒙特卡罗方法的主要应用范围蒙特卡罗方法所特有的优点,使得它的应用范围越来越广。它的主要应用范围包括:粒子输运问题,统计物理,典型数学问题,真空技术,激光技术以及医学,生物,探矿等方面。随着科学技术的发展,其应用范围将更加广泛。蒙特卡罗方法在粒子输运问题中的应用范围主要包括:实验核物理,反应堆物理,高能物理等方面。蒙特卡罗方法在实验核物理中的应用范围主要包括:通量及反应率,中子探测效率,光子探测效率,光子能量沉积谱及响应函数,气体正比计数管反冲质子谱,多次散射与通量衰减修正等方面。
本文标题:蒙特卡罗方法
链接地址:https://www.777doc.com/doc-5918162 .html