您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 北京四中---高中数学高考综合复习 专题三十五 概率与统计(二)
1高中数学高考综合复习专题三十五概率与统计(二)一、知识网络:二、高考考点:1.离散型随机变量的分布列、期望与方差以及运用期望与方差的意义解决实际问题;2.抽样方法的概念与区别;3.总体分布值所用的计算;正态分布的公式以及正态分布曲线的性质应用;24.线性相关以及回归方程的意义。三、知识要点:(二)统计1、抽样方法统计的基本思想是用样本估计总体,即通常不是直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。1o简单随机抽样设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,并且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。认知:(Ⅰ)简单随机抽样的特点①总体的个体数有限;②从总体中逐个地进行抽取;③等概率(不放回)抽样(Ⅱ)通过逐个抽取的方法从总体中抽取一个容量为n的样本,每次抽取一个样本时各个个体被抽到的概率(记为P1)相等,并且在整个抽样过程中各个个体被抽到的概率(记为P2)也相等,但这里P1≠P2。公式:如果运用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本,则(在整个抽样过程中)每个个体被抽到的概率为。(1)抽签法将总体中所有个体编号,并把号码写在形状、大小相同的号签上,然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时,每次从中抽出一个号签,连续抽取n次,就得到一个容量为n的样本,当总体的个体数不多时,适宜采用这种方法。(2)随机数表法事先制好随机数表,表中共随机出现0,1,2,…,9十个数字且在表中每个位置上出现各个数字的概率都是相等的,在此基础上,严格按照课本介绍的步骤进行。2o系统抽样(1)定义当总体中的个体数较多时,将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这样的抽样叫做系统抽样。系统抽样与简单随机抽样的联系在于:将总体匀分后的每一部分进行抽样时,采用的是简单随机抽样。(2)系统抽样的步骤①编号:采用随机方式将总体中的个体编号;3②分段:将整个编号进行分段,分段的间隔;当时,在随机性和客观性的保障下,从总体中剔除一些个体后使剩下的总体中的个数N′能被n整除,并取;③确定起始个体编号:在第一段用简单随机抽样确定起始的个体编号;④按照事先确定的规则抽取样本:通常是将加上间隔,得到第2个编号+,再将(+)加上,得到第3个编号+,如此继续下去,直到获得整个样本。3o分层抽样(1)定义当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,而后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层,分层抽样与简单随机抽样或系统抽样的联系:将总体分成几层,分层抽取时采用简单随机抽样或系统抽样。(2)分层抽样的特点分层抽样充分利用了已知信息,使样本具有较好的代表性,在各层抽样时,可以根据具体情况采取不同的抽样方法,按照各层所占比例抽取样本。小结:三种抽样方法的比较类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率相等从总体中逐个抽取总体中的个体数较少系统抽样将总体均匀分成几部分,按事先确定的规则在各部分抽取在起始部分抽取时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取。各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成2、总体分布的估计用样本的某种特征去估计总体的相应特征,是统计学处理问题的基本方法,其中的重要方面,是利用样本的频率分布估计总体取值的概率分布规律(总体分布),即利用频率分布表、条形图及频率分布直方图去估计分布。1o第一种情况当总体中的个体取的值很少时,其频率分布的表示形式主要有两种:(1)频率分布表:由所取样本的不同数值及其相应频率构制而成。试验结果频数频率第一组个体所取数值第二组个体所取数值4………在这里,对总体中的个体所取数值进行分组之后,落在各个小组内的数值的个数叫做频数,每一小组的频数与数据总数的比值叫做这一小组的频率,其特点是:在对n个数据进行整理的频率分布表中,各组的频数的总和等于样本容量,各组频率的总和则等1。(2)条形图:上述频率分布表的几何表示其中,横轴表示试验结果的若干情况(即个体的若干取值),纵轴表示各试验结果的频率值(即个体取不同数值的频率),条形图是用其高度表示取各值的频率(参见课本典型问题的条形图)。2o第二种情况当总体中的个体取不同数值较多,甚至无限时,其频率分布的表示形式为以下两种形式:(1)频率分布表研究一批数据的频率分布,一般按以下步骤进行①计算数据中最大值与最小值的差(极差),了解这批数据变动的范围。②决定组数与组距:根据一批数据的多少,将数据分成若干组,目的是描述数据分布的规律,组距是指每个小组的两个端点之间的距离。③决定分点:使分点与数据多一位小数,并且把第一组的起点稍微减小一点。④列出频率分布表:已知数据落在各小组内的数据的个数叫做这一小组的频数,每小组的频数与数据总数的比值叫做这一小组的频率,计算出各个小组的频率,填入表中分组频数累计频数频率…………这个表叫做频率分布表(2)频率分布直方图为将频率分布表中的结果直观形象地表示出来,常常绘制出频率分布直方图:以横轴表示各组分布,纵轴表示(各组)频率与组距的比值,以各个组距为底,以各组频率除以组距的商为高,分别画成矩形,便得到频率分布直方图,在这里,每个矩形面积都等于相应小组的频率,即小矩形面积=;各组频率之和等于1,即各小矩形的面积之和为1。3o两种情况的比较与延伸有比较才能有鉴别,比较与鉴别是深化认知的基本途径。(1)上述两种情况的不同之处情况1的频率分布表中列出的是几个不同数值的频率,相应的条形图是用其高度来表示各个值的频率;情况2的频率分布表列出的是在各个不同区间内取值(连续型总体)的频率,相应的直方图是用矩形面积的大小来表示在相应区间内取值的频率。5(2)延伸当样本容量无限增大,分组的组距无限缩小时,频率直方图便会无限接近于一条光滑曲线——总体密度曲线,总体密度曲线反映了总体分布,即反映了总体在各个范围内取值的概率,根据这一曲线,可求出总体在区间()内取值的概率:它等于总体密度曲线,直线轴共同围成的图形面积。认知:同一试验中的每次抽取个体,可以看成在同一随机试验下相应随机变量所取的一个值,当总体与随机变量如此沟通之后,总体分布即相应的随机变量的频率分布,于是,我们可以运用概率的理论来研究和解决统计问题。3、正态分布(1)定义如果随机变量ξ的概率密度函数为,则称ξ服从参数为μσ的正态分布,记作ξ~N(),的图象称为正态曲线。特例:当μ=0,σ=1时,正态总体称为标准正态总体,相应的函数表达式为,相应的曲线称为标准正态曲线。认知:(Ⅰ)若ξ~N(),则参数μ表示总体的平均数:Eξ=μ;参数σ表示总体的标准差:(Ⅱ)当ξ~N()时,。(2)正态曲线的性质(Ⅰ)曲线在x轴上方,与x轴不相交;(Ⅱ)曲线关于直线x=μ对称;(Ⅲ)当x=μ时曲线位于最高点;(Ⅳ)当x<μ时,曲线上升,当x>μ时,曲线下降,并且当曲线向左、右两边无限延伸时,以x轴为渐进线,向x轴无限靠近,呈现出“中间高、两边低”的钟型曲线。(Ⅴ)当μ一定时,曲线的形状由σ确定,σ越大,曲线矮胖,表示总体的分布越分散;σ越小,曲线瘦高,表示总体的分布越集中。(Ⅵ)当σ相同时,正态分布曲线的位置由期望值μ确定。6(3)正态分布与标准正态分布如果随机变量ξ的概率密度函数为,则称ξ服从标准正态分布,即ξ~(0,1)。1o当ξ~(0,1)时,①在标准正态分布表中,相应于x0的值φ(x0)是指总体取值小于x0的概率,即φ(x0)=P(x<x0)其中,当x0≥0时,φ(x0)的值可在标准正态分布表中查到;当x0<0时,由φ(x0)=1-φ(-x0)计算φ(x0)的值。在这里,标准正态曲线与x轴之间的区域面积表示总体取值的概率,其值为1。②据此通过查出标准正态分布表中x=a,x=b时φ(x)的值,进而计算出概率2o当ξ~N()时,(Ⅰ);(Ⅱ);(4)假设检验方法的基本思想与生产过程中质量控制图(Ⅰ)假设检验的基本思想根据小概率事件在一次试验中几乎不可能发生的原理和从总体中抽测的个体的数值,对事先所作的统计假设作出判断:是拒绝假设,还是接受假设。假设检验是就正态总体而言,进行假设检验的三部曲为①提出统计假设,统计假设中的变量服从正态分布;②确定一次实验中的取值是否落入范围;③作出推断:如果,则接受统计假设;如果,则拒绝统计假设。(Ⅱ)生产过程中的质量控制图及其原理生产过程中的质量控制图及其原理,根据上述假设检验的基本思想制作:将正态分布曲线顺时针旋转90o即得质量控制图(本书从略)。四、经典例题例1、某单位有120人,其中青年技术工人60人,工程师36人,技术研究人员24人,从中抽取一个容量为20人的7样本,分别采用简单随机抽样、分层抽样和系统抽样三种方法,试论证不论哪种抽样方法,每个个体被抽到的概率都是相等的。证明:(1)简单随机抽样法:每个个体被抽到的概率均为;(2)系统抽样方法:将120人平均分成20个小组,每组6人,每组取1人,则每个个体被抽到的概率也是;(3)分层抽样法:青年技工、工程师、研究员之比为60:36:24=5:3:2,又,,,故应当从青年技工、工程师、研究员中分别抽取10人,6人,4人,每个个体被抽到的概率分别为,,,即均为;于时可知,不论采用哪一种抽样方法,总体的每一个个体被抽到的概率都是。点评:简单随机抽样法、系统抽样法、分层抽样法,这三种抽样方法既存在差异又相互联系,三种抽样方法的共同点:在抽样过程中,每一个个体被抽到的概率都是相等的,均等于样本容量n与总体中的个体数量N的比值。例2、(1)某中学高一年级组有400人,高二年级组有320人,高三年级组有280人,以每人被抽取的概率为0.2,向该中学抽取一个容量为n的样本,则n=;(2)若从高一的107名学生中,采用系统抽样法抽取10名学生作为样本,则每名学生被抽到的概率为。解:(1)由得n=200;(2)循着系统抽样的步骤,“从107名学生中随机抽取100名,即随机剔除7名”,则任一学生a被抽取的概率为,又“将这100名学生平均分成10部分,再从每一部分中抽取一名学生”,学生a被抽取的概率为,故在这一抽样过程8中学生a被抽取的概率为。点评:我们从本例再一次看到,不管应用上述哪一种抽样方法,从个体数为N的总体中抽取容量为n的样本,每个个体被抽取的概率均为。例3、(1)要从10名女生和5名男生中选出6名学生组成数学研究性学习小组,如果按性别比例分层随机抽样,则组成该学习小组的概率为;(2)某同学有课外书36本,其中教辅类图书18本,文学类图书12本,其它类型图书6本,现要从中抽取一个容量为n的样本,若采用系统抽样和分层抽样,都不必剔除个体;若样本容量为n+1,则采用系统抽样时,需要从总体中剔除1个个体,则n=。解:(1)注意到,故按性别比例应抽取男生(名),抽取女生(名),组成研究性学习小组的个数为,又从15名学生中选6名组成学习小组的结果总数,故所求概率为。(2)由题设知,采用系统抽样时,对整个编号分段的间隔,由此得n的可能取值为n=4,6①又由已知得②∴由①、②得n=6。例4、(1)已知,Eξ≤3,Dξ=1,则P(-1ξ≤1)等于(用φ(x)的值表示)。(2)已知,则=。(3)已知离散型随机变量ξ~N(0,1),P(ξ≤0)=;P(-2<ξ<2)=。9(4)抽样调查表时,某中学高三年级学生成绩(总分750分)近似服从正态分布,平均成绩500分,若P(400<x<450)=0.3,则P(550<x<600)=分析:(1)由μ,σ2的定义得μ=3,σ2=1故有ξ~N(3,1),∴(2)借助换元转化:令,则η~N(0,1)∴即查标准正态分布表得φ(0.20)=0.5793,故有,解得=10;(3)注意到标准正态曲线的对轴轴为x=10,并且这里σ=1,故有;(4)注意到x~N(500,σ2),其概率密度曲线关于直线x=500对称,故在以μ=500
本文标题:北京四中---高中数学高考综合复习 专题三十五 概率与统计(二)
链接地址:https://www.777doc.com/doc-5932359 .html