您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 图形的平移和旋转(教案和习题)
§3.1生活中的平移一、新知要点(1)平移的概念(2)平移的特点(3)平移的基本性质火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,那么在运动的过程中这些物体的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?这种运动就叫做什么?1.图形的平移例1:下图中的图形A向右平移了6格得到图形A′(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小。(2)平移的特点:①平移是指整个图形平行移动,包括图形的每一条线段,每一个点。经过平移,图形上的每一个点都沿同一个方向移动相同的距离。②平移不改变图形的形状、大小,方向,只改变图形的位置。例2、观察下图△ABE沿射线XY的方向平移一定距离后成为△CDF。找出图中存在的平行且相等的三条线段和一组全等三角形。AA′(3)平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。二、新知巩固(练习)1.平移改变的是图形的()A位置B大小C形状D位置、大小和形状2.经过平移,对应点所连的线段()A平行B相等C平行且相等D既不平行,又不相等3.经过平移,图形上每个点都沿同一个方向移动了一段距离,下面说法正确的是()A不同的点移动的距离不同B既可能相同也可能不同C不同的点移动的距离相同D无法确定4.如图,四边形ABCD平移后得到四边形EFGH,填空(1)CD=______,(2)∠F=______(3)HE=,(4)∠D=_____,(5)DH=_________。5.如图,若线段CD是由线段AB平移而得到的,则线段CD、AB关系是__________.6.试着做一做:(1)把图形向右平移7格后得到(2)把图形向左平移5格后到的图形涂上颜色。的图形涂上颜色。(3)画出小船向右平移6格后的图形(4)画出向右平移6格后的图形三、归纳小结●通过本节课的学习,我们明白了什么叫平移。(在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。)●总结出了平移的性质。(平移不改变图形的形状和大小。经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。)四、课外作业:1.将长度为3cm的线段向上平移20cm,所得线段的长度是()A3cmB23cmC20cmD17cm2.关于平移的说法,下列正确的是()A经过平移对应线段相等;B经过平移对应角可能会改变C经过平移对应点所连的线段不相等;D经过平移图形会改变、3.把可以平移到黑色位置的涂上颜色。4.把图中的三角形ABC(可记为△ABC)向右平移6个格子,画出所得的△'''CBA。BCA§3.2简单的平移作图一、知识回顾1.平移的概念2.平移的性质二、新知要点1.平移图形的规律,作图的顺序;2.平行线的作法及对应点的连结;3.平移三要素:原图形位置,平移方向,平移距离。例1:观察理解平移后的图形。例2:把图中的三角形ABC(可记为△ABC)向右平移8个格子,画出所得的△'''CBA。度量△ABC与△'''CBA的边,角的大小,你发现什么呢?解:(1)、经过平移的图形与原来的图形的对应线段,对应角,图形的形状和大小都。(2)、平移的对应点所连线段。(3)、其中BC与B′C′的关系是(位置关系和数量关系)。线段AB与A′B′的关系是(位置关系和数量关系)。若AC=5,则A′C′=,若∠BAC=60°,则∠B′A′C′=。若△ABC周长为30,则△A′B′C′周长为。BCA若△ABC面积为S,则△A′B′C′面积为。例3:画出平移后的图形。通过操作我们发现:1.在方格纸上平移图形时,把一个图形向某个方向平移几格,不是指原图形和平移后得到的新图形两个图形之间的空格有几格,而是指原图形的每个顶点都向这一方向平移了几格。2.在方格纸上平移图形时,可以把这个图形的各个顶点按指定的方向平移到新位置,先分别描出各点,再把各点按原来的顺序连接起来,成为按要求平移后得到的新图形。3.用平移的方式画一排或一列图形时,可以在第一个图形的底部或左右画一条横线或竖线,以这条横线或竖线为基准,画出的图形就是平移得到的。4.平移图形或物体时,可以一次平移,也可以两次平移,物体的方向都不会改变。例4:如图,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形。分析:因为A与D是对应点,而平移的对应点的连线段平行且相等所以平移方向——射线AD,平移距离——线段AD的长,作法:1.分别过点B、C沿AD方向作线段BE、CF,使它们与AD平行且相等2.顺次连结D、E、F则△DEF即为所求。参考图三、新知巩固1.分别画出将□向下平移4格,向左平移8格后得到的图形。分析:要分别画出将□向下平移4格、向左平移8格后得到的图形,先要分别描出□四个顶点向下平移4格、向左平移8格后的新位置上的四个顶点,再把四个顶点顺次连接起来,就得到符合题意要求的图形。2.画出花瓶向上平移4格后的图形,再3.画出三角形向右平移6格后的图形,画出它继续向左平移7格后的图形。再画出梯形向下平移5格后的图形四、归纳小结●通过本节课的学习我们学会了平移作图。●确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离。五、课外作业1.下列说法正确的是()A由平移得到的两个图形的对应点连线长度不一定相等B我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向的平移”C小明第一次乘观光电梯,随着电梯向上升,他高兴地对同伴说:“太棒了,我现在比大楼还高呢,我长高了!”D在图形平移过程中,图形上可能会有不动点2.画画做做想想(1)移6格后得到的涂上颜色。(2)分别画出将向下平移5格、向右平移10格后得到的图形。(3)画出小旗向右平移3格再向下(4)分别画出将图形向上平移3格、平移2格后的图形向左平移8格后得到的图形。3.如图,已知△ABC,画出△ABC沿PQ方向平移2cm后的△A′B′C′.4.二年级同学表演节目,11个男同学排成一排,每两个男生之间安排一个女生,表演节目的男女生一共有多少人?§3.3生活中的旋转一、知识回顾下列现象哪些是平移?平移的特点有哪些?①平移是指整个图形平行移动,包括图形的每一条线段,每一个点.经过平移,图形上的每一个点都沿同一个方向移动相同的距离。②平移不改变图形的形状、大小,方向,只改变图形的位置。日常生活中,我们经常见到(钟表、风扇、汽车方向盘,摩天轮,旋转木马……)钟表指针的转动、风扇扇叶的转动、汽车方向盘的转动等情景。(1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?风扇扇叶的转动、汽车方向盘的转动呢?二、新知要点1.旋转在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这个定点称为旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度。在物体绕着一个定点转动时,它的形状和大小不变。因此,旋转具有不改变图形的大小和形状的特征。例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的置。2.旋转的性质(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等;(4)图形的旋转由旋转中心和旋转角度决定。三、新知巩固1.如图所示,如果把钟表的指针看作四边形AOBC,它绕O点按顺时针方向旋转得到四边形DOEF。在这个旋转过程中(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移到什么位置?(3)AO与DO的长有什么关系?BO与EO呢?(4)∠AOD与∠BOE有什么大小关系?2.在正方形ABCD中,∠1=∠2=30°,试把ΔADE绕点A顺时针旋转90°,观察整个图形中角与角之间,线段与线段之间,存在哪些相等的关系?探索DE,BF,AF之间的关系。四、归纳小结●认识了旋转的图形;●旋转图形的三要素:旋转中心、旋转角、旋转方向;●旋转图形的性质。五、课外作业1.平移不改变图形的________,只改变图形的位置。故此若将线段AB向右平移3cm,得到线段CD,如果AB=5㎝,则CD=___________2.下列关于旋转和平移的说法正确的是()A旋转使图形的形状发生改变B由旋转得到的图形一定可以通过平移得到C平移与旋转的共同之处是改变图形的位置和大小D对应点到旋转中心距离相等3.如图,正方形ABCD可以看成由三角形______旋转而成的,其旋转中心为______点,旋转角度依次为________,________,________。DFEOABC21MFDCABE4.下列现象哪些是平移,哪些是旋转。5.会变的头像左图中的头像,是一个顽皮的小孩,正在嬉皮笑脸地开玩笑。倒过头来仔细看看,再说一说这是个什么人?他是什么样的表情?§3.4简单的旋转作图一、知识回顾1.旋转的概念2.旋转的三要素3.旋转的性质如图,在方格上作出“小旗子”绕O点按顺时针方向旋转90度后的图案,并简述理由。二、新知要点简单图形的旋转作图两种情况:①给出绕着旋转的定点,旋转方向和旋转角的大小;②给出定点和图形的一个特殊点旋转后的对应点。作图步骤:①作出图形的几个关键点旋转后的对应点;②顺次连接各点得到旋转后的图形。例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.O(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形。例2.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到。△ABF与△ADE是完全重合的,所以它是直角三角形.解:(1)旋转中心是A点(2)∵△ABF是由△ADE旋转而成的∴B是D的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∴AE=2211()4=174∵对应点到旋转中心的距离相等且F是E的对应点∴AF=174(4)∵∠EAF=90°(与旋转角相等)且AF=AE∴△EAF是等腰直角三角形.三、新知巩固1.平面图形的旋转一般情况下改变图形的()A位置B大小C形状D性质2.9点钟时,钟表的时针和分针之间的夹角是()A30°B45°C60°D90°3.将平行四边形ABCD旋转到平行四边形A′B′C′D′的位置,下列结论错误的是()A.AB=A′B′B.AB∥A′B′C.∠A=∠A′D.△ABC≌△A′B′C′4.做一做在图1中,将大写字母A绕着它右下侧的顶点按顺时针方向旋转90度,请作出旋转后的图案.图1四、归纳小结●图形的旋转●图形旋转的性质●简单图形的旋转作图步骤五、课外作业1.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______。2.菱形ABCD绕点O沿逆时针方向旋转到四边形DCBA,则四边形DCBA是__________。3.△ABC绕一点旋转到△A′B′C′,则△ABC和△A′B′C′的关系是______
本文标题:图形的平移和旋转(教案和习题)
链接地址:https://www.777doc.com/doc-6031524 .html