您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 八年级数学上册-全等三角形(常见辅助线)
专题学习----几何证明中常见的“添辅助线”方法----“周长问题”的转化Ⅰ.连结典例1:如图,AB=AD,BC=DC,求证:∠B=∠D.ACBD1.连结AC构造全等三角形2.连结BD构造两个等腰三角形目的:构造全等三角形或等腰三角形Ⅰ.连结典例2:如图,AB=AE,BC=ED,∠B=∠E,AM⊥CD,求证:点M是CD的中点.ACBD连结AC、AD构造全等三角形EMⅠ.连结典例3:如图,AB=AC,BD=CD,M、N分别是BD、CD的中点,求证:∠AMB=∠ANCACBD连结AD构造全等三角形NMⅠ.连结典例4:如图,AB与CD交于O,且AB=CD,AD=BC,OB=5cm,求OD的长.ACBD连结BD构造全等三角形OⅡ.角平分线上点向两边作垂线段典例1:如图,△ABC中,∠C=90o,BC=10,BD=6,AD平分∠BAC,求点D到AB的距离.ACD过点D作DE⊥AB构造了:全等的直角三角形且距离相等BE目的:构造直角三角形,得到距离相等Ⅱ.角平分线上点向两边作垂线段典例2:如图,△ABC中,∠C=90o,AC=BC,AD平分∠BAC,求证:AB=AC+DC.ACD过点D作DE⊥AB构造了:全等的直角三角形且距离相等BE思考:若AB=15cm,则△BED的周长是多少?Ⅱ.角平分线上点向两边作垂线段典例3:如图,梯形中,∠A=∠D=90o,BE、CE均是角平分线,求证:BC=AB+CD.ACD过点E作EF⊥BC构造了:全等的直角三角形且距离相等BF思考:你从本题中还能得到哪些结论?EⅡ.角平分线上点向两边作垂线段2.如图,梯形中,∠A=∠D=90o,BE、CE均是角平分线,求证:BC=AB+CD.延长BE和CD交于点F构造了:全等的直角三角形F思考:你从本题中还能得到哪些结论?ACDBEⅡ.角平分线上点向两边作垂线段典例4:如图,OC平分∠AOB,∠DOE+∠DPE=180o,求证:PD=PE.ACD过点P作PF⊥OA,PG⊥OB构造了:全等的直角三角形且距离相等BF思考:你从本题中还能得到哪些结论?EPGO目的:构造直角三角形,得到斜边相等Ⅲ.垂直平分线上点向两端连线段△ABC中,AB>AC,∠A的平分线与BC的垂直平分线DM相交于D,过D作DE⊥AB于E,作DF⊥AC于F。求证:BE=CFABCDEFM连接DB,DC垂直平分线上点向两端连线段1.AD是△ABC的中线,Ⅳ.中线延长一倍ABCDE)(21ACABAD求证:延长AD到点E,使DE=AD,连结CE.目的:构造直角三角形,得到斜边相等mB'AC=42.35mBAB'=42.23已知在△ABC中,∠C=2∠B,∠1=∠2求证:AB=AC+CDADBCE12在AB上取点E使得AE=AC,连接DE截长F在AC的延长线上取点F使得CF=CD,连接DF补短A1BCD234如图所示,已知AD∥BC,∠1=∠2,∠3=∠4,直线DC经过点E交AD于点D,交BC于点C。求证:AD+BC=ABEF在AB上取点F使得AF=AD,连接EF截长补短1.如图,△ABC中,∠C=90o,AC=BC,AD平分∠ACB,DE⊥AB.若AB=6cm,则△DBE的周长是多少?Ⅴ.“周长问题”的转化借助“角平分线性质”BACDEBE+BD+DEBE+BD+CDBE+BCBE+ACBE+AEAB2.如图,△ABC中,D在AB的垂直平分线上,E在AC的垂直平分线上.若BC=6cm,求△ADE的周长.Ⅴ.“周长问题”的转化借助“垂直平分线性质”BACDEAD+AE+DEBD+CE+DEBC3.如图,A、A1关于OM对称,A、A2关于ON对称.若A1A2=6cm,求△ABC的周长.Ⅴ.“周长问题”的转化借助“垂直平分线性质”BACOMAB+AC+BCA1B+A2C+BCA1A2A1A2N4.如图,△ABC中,MN是AC的垂直平分线.若AN=3cm,△ABM周长为13cm,求△ABC的周长.Ⅴ.“周长问题”的转化借助“垂直平分线性质”BACMAB+BC+ACAB+BM+MC+6NAB+BM+AM+613+65.如图,△ABC中,BP、CP是△ABC的角平分线,MN//BC.若BC=6cm,△AMN周长为13cm,求△ABC的周长.Ⅴ.“周长问题”的转化借助“等腰三角形性质”BACPAB+AC+BCAM+BM+AN+NC+6NAM+MP+AN+NP+613+6MAM+AN+MN+6线段与角求相等,先找全等试试看。图中有角平分线,可向两边作垂线。线段垂直平分线,常向两端把线连。线段计算和与差,巧用截长补短法。三角形里有中线,延长中线=中线。想作图形辅助线,切莫忘记要双添。
本文标题:八年级数学上册-全等三角形(常见辅助线)
链接地址:https://www.777doc.com/doc-6036533 .html