您好,欢迎访问三七文档
clear all;close all;clc %%%%%%%%%%%%%%参数设置%%%%%%%%%%%%%%%%%%%%%%% step_len=0.05;%步长 variance_v=0.02;%方差 repeat_times=100;%重复次数 iteration_times=500;%迭代次数 filt_len=2;%滤波器长度 %%%%%%%%%%%%%%%%%%%%变量及数组初始化%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Square_err=zeros(repeat_times,iteration_times); Chan_factor1=[‐0.195 0.95]; X=zeros(filt_len,1); W1=[]; W2=[]; Wm1=[repeat_times,iteration_times]; Wm2=[repeat_times,iteration_times]; %%%%%%%%%%%%%外循环,重复做repeat_timws次实验,平均值%%%%%%%%%%%%%%%% for loop1=1:repeat_times%循环次数 %%%%%%%%%%%%%%内循环变量及数组初始化%%%%%%%%%%%%%%%%%%%%%%%% Source=zeros(iteration_times,1); W=zeros(filt_len,1); %%%%%%%%%%%%%内循环,做iteration_times次迭代%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:iteration_times %%%%%%%%%%%%%%信源,产生等概率分布的正负1%%%%%%%%%%%%%%%%%%%%%%%%%%%% if rand0.5 Source(i)=‐1; else Source(i)=1; end end %%%%%%%%%%%%%%信道,滤波和加噪 声%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Revdata=filter(Chan_factor1,1,Source)+randn(iteration_times,1)*sqrt(variance_v); % filter the Source %%%%%%%%%%%%%%均衡器,基于LMS算 法%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for loop2=1:iteration_times‐filt_len+1 U=Source(loop2:loop2+filt_len‐1); d=Revdata(loop2+1); e=d‐W'*U; W=W+step_len*U*e; Wm1(loop2,loop1)=W(1); Wm2(loop2,loop1)=W(2); Square_err(loop1,loop2)=e.^2; end end %%%%%%%%%%%%%%作图,显示结果%%%%%%%%%%%%%%%%% Square_err_mean=sum(Square_err(:,:))/repeat_times; % Wm2 W1=Wm1(:,repeat_times); W2=Wm2(:,repeat_times); meanW1=mean(Wm1,2); meanW2=mean(Wm2,2); Square_err; %semilogy(Square_err_mean); figure(1); plot(Square_err_mean./max(Square_err_mean),'LineWidth',2); hold on; suijishu=randperm(repeat_times); plot(Square_err(suijishu(1),:)./max(Square_err(suijishu(1),:)),'r'); legend([num2str(repeat_times),'次重复试验平均误差'],'单次误差'); xlabel('迭代次数');ylabel('均方误差');title(['步长为 ',num2str(step_len),num2str(iteration_times),'次迭代均方误差变化曲线']); grid on; figure(2); plot(W1);hold on; plot(W2,'r');hold on; plot(meanW1,'k');hold on; plot(meanW2,'‐‐k'); legend('W1','W2',[num2str(repeat_times),'次重复试验W1'],[num2str(repeat_times),'次重复试验W2']); xlabel('迭代次数');ylabel('抽头权值');title(['步长为 ',num2str(step_len),num2str(iteration_times),'次迭代权值学习曲线']); grid on; 010020030040050000.10.20.30.40.50.60.70.80.91迭代次数均方误差步长为次迭代均方误差变化曲线0.05500次重复试验平均误差100单次误差 0100200300400500-0.4-0.200.20.40.60.811.2迭代次数抽头权值步长为次迭代权值学习曲线0.05500W1W2次重复试验100W1次重复试验100W2
本文标题:LMS算法学习曲线
链接地址:https://www.777doc.com/doc-6110601 .html