您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 24.4.3解直角三角形(坡度与坡比)
24.4.3.解直角三角形(坡度与坡角)在直角三角形中,除直角外,由已知两元素求其余未知元素的过程叫解直角三角形.1.解直角三角形(1)三边之间的关系:a2+b2=c2(勾股定理);2.解直角三角形的依据(2)两锐角之间的关系:∠A+∠B=90º;(3)边角之间的关系:tanA=absinA=accosA=bc(必有一边)cotA=baACBabc别忽略我哦!教学目标:回运用解直角三角形有关知识解决与坡度、坡角有关的实际问题。重点:解决有关坡度的实际问题。难点:理解坡度的有关术语。自学指导自学范围:课本第115,116页。自学时间:3分钟自学方法:独立看书,独立思考。自学要求:1.知道坡比概念以及和坡角的关系。2.完成例4。3.记住读一读。二、设置提纲,引导自学1、斜坡的坡度是,则坡角α=______度。2、斜坡的坡角是450,则坡比是_______。3、斜坡长是12米,坡高6米,则坡比是_______。3:1αLh301:13:1自学检测αlhi=h:l1、坡角坡面与水平面的夹角叫做坡角,记作α。2、坡度(或坡比)坡度通常写成1∶m的形式,如i=1∶6.如图所示,坡面的铅垂高度(h)和水平长度(l)的比叫做坡面的坡度(或坡比),记作i,即i=——hl3、坡度与坡角的关系tanilh坡度等于坡角的正切值坡面水平面例4、如图,一段路基的横断面是梯形,高为4.2m,上底的宽是12.51m,路基的坡面与地面的倾角分别是30°和45°.求路基下底的宽.(精确到0.1m)45°30°ABCDEF1.水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求:(1)坝底AD与斜坡AB的长度。(精确到0.1m)(2)斜坡CD的坡角α。(精确到)01EFADBCi=1:2.52363:1iα分析:(1)由坡度i会想到产生铅垂高度,即分别过点B、C作AD的垂线。(2)垂线BE、CF将梯形分割成Rt△ABE,Rt△CFD和矩形BEFC,则AD=AE+EF+FD,EF=BC=6m,AE、DF可结合坡度,通过解Rt△ABE和Rt△CDF求出。(3)斜坡AB的长度以及斜坡CD的坡角的问题实质上就是解Rt△ABE和Rt△CDF。解:(1)分别过点B、C作BE⊥AD,CF⊥AD,垂足分别为点E、F,由题意可知在Rt△ABE中31iAEBEBE=CF=23mEF=BC=6m69m2333BEAE在Rt△DCF中,同理可得57.5m232.52.5CFFDFDEFAEAD=69+6+57.5=132.5m在Rt△ABE中,由勾股定理可得72.7m2369BEAEAB2222(2)斜坡CD的坡度i=tanα=1:2.5=0.4由计算器可算得EFADBCi=1:2.52363:1iα022答:坝底宽AD为132.5米,斜坡AB的长约为72.7米.斜坡CD的坡角α约为22°。2.51FDCFi五、小结1、学以致用我们学习数学的目的就是解决实际生活中存在的数学问题,因此,在解题时首先要读懂题意,把实际问题转化为数学问题。对于生活中存在的解直角三角形的问题,关键是找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作辅助线构造直角三角形(作某边上的高是常用的辅助线)。2、解直角三角形的问题往往与其他知识联系,因此,我们要善于要把解直角三角形作为一种工具,能在解决各种数学问题时合理运用。本节课你有哪些收获?作业:P121B组第12题
本文标题:24.4.3解直角三角形(坡度与坡比)
链接地址:https://www.777doc.com/doc-6169200 .html