您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 指数与对数函数幂函数知识点总结
郎玮婷指数函数与对数函数知识点总结(一)指数与指数幂的运算1.根式的概念:一般地,如果axn,那么x叫做a的n次方根,其中n1,且n∈N*.负数没有偶次方根;0的任何次方根都是0,记作00n。当n是奇数时,aann,当n是偶数时,)0()0(||aaaaaann2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*nNnmaaanmnm)1,,,0(11*nNnmaaaanmnmnm0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)ra·srraa),,0(Rsra;(2)rssraa)(),,0(Rsra;(3)srraaab)(),,0(Rsra.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(aaayx且叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a10a1654321-1-4-224601654321-1-4-224601定义域R定义域R值域y>0值域y>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,)1a0a(a)x(fx且值域是)]b(f),a(f[或)]a(f),b(f[;郎玮婷(2)若0x,则1)x(f;)x(f取遍所有正数当且仅当Rx;(3)对于指数函数)1a0a(a)x(fx且,总有a)1(f;二、对数函数(一)对数1.对数的概念:一般地,如果Nax)1,0(aa,那么数x叫做以.a为底..N的对数,记作:Nxalog(a—底数,N—真数,Nalog—对数式)说明:○1注意底数的限制0a,且1a;○2xNNaaxlog;○3注意对数的书写格式.两个重要对数:○1常用对数:以10为底的对数Nlg;○2自然对数:以无理数71828.2e为底的对数的对数Nln.指数式与对数式的互化幂值真数ba=NlogaN=b底数指数对数(二)对数的运算性质如果0a,且1a,0M,0N,那么:○1Ma(log·)NMalog+Nalog;○2NMalogMalog-Nalog;○3naMlognMalog)(Rn.注意:换底公式abbccalogloglog(0a,且1a;0c,且1c;0b).利用换底公式推导下面的结论(1)bmnbanamloglog;(2)abbalog1log.(二)对数函数1、对数函数的概念:函数0(logaxya,且)1a叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:○1对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:xy2log2,5log5xy都不是对数函数,Nalog郎玮婷而只能称其为对数型函数.○2对数函数对底数的限制:0(a,且)1a.2、对数函数的性质:a10a132.521.510.5-0.5-1-1.5-2-2.5-11234567801132.521.510.5-0.5-1-1.5-2-2.5-112345678011定义域x>0定义域x>0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)幂函数一般地,形如)Ra(xya的函数称为幂函数,其中a为常数。幂函数中,当121321a,,,,时性质如下表所示:画图函数特征性质y=xyx2yx3yx12yx1定义域RRR[0,){|}xx0值域R[0,)R[0,){|}yy0x[)0,增x()0,增单调性增x(],0减增增x(),0减所过定点(1,1)(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)结合以上特征,得幂函数的性质如下:(1)所有的幂函数在()0,都有定义,并且图象都通过点(1,1);(2)当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数;(3)如果a0,则幂函数的图象通过原点,并且在区间)0[,上是增函数;(4)如果a0,则幂函数在区间()0,上是减函郎玮婷Notsurprisingly,manyaspectsofpeople'sdailyliveshaveundergoneconsiderablechangesbecauseoftherecentdevelopmentintechnology.Itisaparticularconcernthatthepaceofeverydaylifeisbecomingfaster,resultingfromthedevelopmentincars,airtravel,telecommunicationstechnologyandtheInternet。Aswellasbenefits,thistrendistobringproblems.Onthepositiveside,thefastrhythmofliferequirespeopletoenhanceefficiencywhenworkingandthenallowsthemtoenjoylongerleisuretime.Withtheadvanceintechnologypeoplecanmakeinquiresbyphone,insteadoftravellinglongdistances,Internetaccessmakesitpossible(foronetoperformvarioustaskswithoutleavingtheiroffices.Eventhoughpeoplehavetotraveleverynowandthen,formeetingbusinesspartners,visitingclientsinothercitiesorotherpurposes,modemtransportnetworksreducetheamountoftimetheyspendoncommutes.Theaccelerationofthepaceoflifealsoimpliestheexpansionofpeople'ssocialcircle.Inthepast,socialrelationshipswerelimitedbyphysicalfactorssuchasgeographicaldistanceandlowmobility,butnowadays,onecantravelfurtherandgetacquaintedwithmorepeoplewiththosetechnologicaladvances,suchastherailroad,theautomobileandthetelephone.Forinstance,therapidpenetrationoftelecommunicationstechnologyhasmadethemobilephoneakeysocialtoolandpeoplerelyontheirmobilephoneaddressbooktokeepintouchwiththeirfriends.Onthenegativeside,thefast-pacedlifestyleisresponsiblefortheupsurgeinlifestyle-relatedproblems.Jobsbecomedemandingandrequireworkers'fullcommitment,resultingintheirdepressionandpressure.Underneaththefacadeofcontinuedcontractionofofficialworkinghours,employeesareactuallyworkinglonger,primarilybecausefax,e-mailorothercommunicationdeviceshavemadethemaccessibletotheirsupervisors,colleaguesandcustomersafterwork.Theyhavetorespondinstantlytovoiceandemailmessagesfromothers.Privatelifehastobesacrificed.Accordingtothefactsoutlinedabove,thedoubtsaboutthenegativeeffectsoftheaccelerationofpaceoflifearenotwell-grounded.Peoplenowenjoygreaterwell-being,whichisreflectedinmorequalityfamilytime,lesstravel-relatedstressandclosecontactwithfriendsandfamilymembers.However,theymighthavetoacceptfrequentintrusionsasaby-productofconvenientcommunication.
本文标题:指数与对数函数幂函数知识点总结
链接地址:https://www.777doc.com/doc-6170933 .html