您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 最新北师大版小学数学五年级知识点归纳
1五年级上册数学知识点归纳第一单元小数除法1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。3、连除的算式可以写成被除数除以几个数的积,但除以几个数的积时,必须给这个相乘的式子加上小括号。即a÷b÷c=a÷(b×c)4、在小数除法中的发现:①一个不为0的数,除数大于1的数,商小于被除数。如:3.5÷5=0.7②一个不为0的数,除数小于1的数(0除外),商大于被除数。如:3.5÷0.5=7③一个不为0的数,除数等于1的数,商等于被除数。如:3.5÷1=3.55、小数除法的验算方法:被除数=除数×商(通用)除数=被除数÷商商=被除数÷除数6、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。(即除的小数位数要比要求保留的小数位数多一位)7、循环小数:A、小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135等。B、小数部分的位数是无限的小数,叫做无限小数。如5.3…7.145145…等。C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。(如5.3…3.12323…5.7171…)D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。(如5.333…的循环节是3,4.6767…的循环节是67,6.9258258…的循环节是258)E、用简便方法写循环小数的方法:①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点②例如:只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333…写作5.3;有两位小数循环的,就在这两位数字上面,记上小圆点,7.4343…写作7.43;有三位或以上小数循环的,在首位和末位记上小数点,10.732732…写作10.7328、除法中的变化规律:①商不变的规律:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大几倍,商就扩大几倍。③被除数不变,除数缩小几倍,商反而扩大几倍。9、小数的四则混合运算顺序与整数四则混合运算的运算顺序相同。只有加减或只有乘除,按从左往右的顺序依次计算,既有加减又有乘除,先算乘除,后算加减,有括号的要先算小括号里面的,再算中括号里面的,最后算中括号后面的。第二单元轴对称和平移1.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个样的图形叫作轴对称图形,这条直线叫作对称轴。两图形重合时互相重合的点叫做对应点,也叫对称点。22.轴对称图形的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴。3.轴对称图形具有对称性。4、圆形有无数条对称轴,正方形有4条对称轴,等边三角形有3条对称轴,长方形和菱形有2条对称轴,等腰三角形和等腰梯形有1条对称轴。平行四边形不是轴对称图形。5、轴对称图形的法:(1)找出所给图形的关键点,如图形的顶点、相交点、端点等;(2)数出或量出图形关键点到对称轴的距离;(3)在对称轴的另一侧找出关键点的对称点;(4)按照所给图形的顺序连接各点,就画出所给图形的轴对称图形。1.平移的定义:在平面内,一个图形沿某个方向平行移动一定的距离的运动,叫作平移。2.平移的基本性质:(1)平移不改变图形的形状和大小,只改变图形的位置。(2)经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等。3.平移图形的画法:(1)确定平移的方向与距离。(2)将关键点按所需方向平移所需距离。(3)按原来图形的连接方式依次连接各对应点。4、平移几格并不是指原图形和平移后的新图形之间的空格数,而是指原图形的关键点平移的格数。设计图案的基本方法:平移、对称1.运用平移设计图案的方法:(1)选好基本图案;(2)根据所选的基本图案确定平移的格数和方向;(3)平移,描出对应点;(4)按顺序连接对应点2.运用对称设计图案的方法:(1)先选好基本图案,(2)依据基本图案的特点定好对称轴;(3)选好关键点并描出关键点的对应点。(4)按顺序连接对应点,画出基本图形的对称图形第三单元倍数和因数1、像0,1,2,3,4,5,6,…这样的数是自然数。2、像-3,-2,-1,0,1,2,3,…这样的数是整数。(整数包括了正整数、负整数和0)3、我们只在自然数(零除外)范围内研究倍数和因数。4、倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。5、一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数,一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身(即一个数最大的因数和最小的倍数都是它本身)6、2的倍数的特征:个位上是2,4,6,8,0的数是2的倍数。7、5的倍数的特征:个位上是0或5的数都是5的倍数。8、既是2的倍数,又是5的倍数的特征:个位上是0的数既是2的倍数,又是5的倍数。(既是2的倍数,又是5的倍数都是整十数,最小的两位数是10,最小的三位数是100)9、偶数和奇数的定义:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。10、3的倍数的特征:一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。11、同时是2和3的倍数的特征:个位上是2,4,6,8,0的数,并且各个数位上的数字之和是3的倍数的数,既是2的倍数,又是3的倍数。(同时是2和3的倍数,一定是6的倍数,最小的是6。)312、同时是3和5的倍数的特征:个位上的数是0或5,并且各个数位上的数字之和是3的倍数的数,既是3的倍数,又是5的倍数。(同时是3和5的倍数,一定是15的倍数,最小的是15。)13、同时是2,3和5的倍数的特征:个位上的数是0,并且各个数位上的数字之和是3的倍数的数,既是2和5的倍数,又是3的倍数。(同时是2,3和5的倍数,一定是30的倍数,最小的两位数是30,最小的三位数是120)14、9的倍数的特征:一个数各个数位上的数字之和是9的倍数,这个数就是9的倍数,是9的倍数的数也一定是3的倍数,是3的倍数的数不一定是9的倍数。15、找因数:在1~100的自然数中,找出某个自然数的所有因数的方法:(1)运用乘法算式:哪两个数相乘等于这个自然数,那么这两个乘数就是这个数的因数。即在乘法中,积是两个乘数的倍数,两个乘数是积的因数。(2)运用除法算式,这个数除以几能整除,那么除数和商就是这个数的因数。即整除的除法里,被除数是除数和商的倍数,除数和商是被除数的因数。16、一个数的因数的个数是有限的。其中最小的因数是1,最大的因数是它本身。17、找一个数的因数,通常用列举的方法,可一对一对的写出来,也可按从小到大的顺序来写。18、一个数只有1和它本身两个因数,这个数叫作质数。19、一个数除了1和它本身以外还有别的因数,这个数叫作合数。20、1既不是质数也不是合数。21、判断一个数是质数还是合数的方法:一般来说,首先可以用“2,3,5的倍数的特征”判断这个数是否有因数2,3,5;如果还无法判断,则可以用7,11等比较小的质数去试除,看有没有因数7,11等。只要找到一个1和它本身以外的因数,就能肯定这个数是合数。如果除了1和它本身找不到其他因数,这个数就是质数。22、100以内质数表:2、3、5、7和11。13后面是17。19、23、29。31、37、41。43、47、53。59、61、67。71、73、79。83、89、97。23、数的奇偶性:运用“列表”“画示意图”等方法发现规律:例如小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。通过“列表”“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。通过计算发现奇数、偶数相加奇偶性变化的规律:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数奇数-偶数=奇数偶数×偶数=偶数偶数×奇数=偶数奇数×奇数=奇数第四单元多边形面积比较图形的面积1、借助方格纸,能直接判断图形面积的大小。平面图形面积大小的比较有多种方法:数方格的的方法进行比较、运用重叠的方法进行比较,直接计算面积后再进行比较,借助参照物进行比较等方法。2、确定一个图形面积的大小,不仅是根据图形的形状,更重要的是根据图形所占格子的多少来确定。认识平行四边形、三角形与梯形的底和高。1、从平行四边形一边的某一点到对边画垂直线段,这条垂直线段就是平行四边形的高,这条对边是平行四边形的底。42、三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。3、从梯形的两条平行线中的一条上的某一点到对边画垂直线段,这条垂直线段就是梯形的高,这条对边就是梯形的底。4、高和底的关系是对应的。5、平行四边形和梯形有无数条高,三角形有3条高。6、用三角板画出平行四边形的高的方法:把三角板的一条直角边与平行四边形的一条边重合,让三角板的另一条直角边过对边的某一点。从这一点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从点到垂足)就是平行四边形一条边上的高。注意:从一条边上的任意一点可以向它的对边画高,也可以从另一条边上的任意一点向它的对边画高。7、用三角板画出三角形的高的方法:把三角板的一条直角边对准三角形的一个顶点,另一条直角边与这个顶点的对边重合。从这个顶点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从顶点到垂足)就是三角形形一条边上的高。8、用三角板画梯形的高的方法:与画平行四边形高的方法一样,画出梯形两条平行线之间的垂直线段,就是梯形的高。(一)平行四边形的面积1、平行四边形的面积=拼成的长方形的面积2、长方形的长等于平行四边形的底;长方形的宽等于平行四边形的高。因此:平行四边形面积=底×高,如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积公式可以写成:S=a×h=ah3、等底等高的平行四边形面积相等,面积相等的平行四边形底和高不一定相等,形状也不一定相同。(二)三角形的面积1、三角形面积=两个相同三角形拼成的平行四边形的面积÷2三角形的底和高,也就是平行四边形的底和高。因此:三角形面积=平行四边形的面积÷2=底×高÷2。如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积公式可以写成:S=a×h÷2=ah÷22、决定三角形面积的大小的因素不是图形的形状,而是三角形的底与高的长度,只要底和高相同,不同形状的三角形的面积也是相同的。3、等底等高的三角形面积相等,面积相等的三角形底和高不一定相等,形状也不一定相同。4、三角形面积是等底等高平行四边形面积的一半。(三)梯形的面积1、梯形面积=两个相同梯形拼成的平行四边形的面积÷2梯形的上底与下底的和就是平行四边形的底,梯形的高就是平行四边形的高。因此:梯形面积=平行四边形面积÷2=底×高÷2=(上底+下底)×高÷2,如果用S表示梯形的面积,用a和b分别表示梯形的上底和下底,用h表示梯形的高,那么,梯形的面积公式可以写成:S=(a+b)×h÷22、决定梯形面积的大小的因素不是图形的形状,而是梯形的上、下底之和与高的长度,只要上下底的和与高相同,不同形状的梯形的面积也是相同的。3、正方形的周长=边长×4长方形的周长=(长+宽)×24、长方形的面积=长×宽即S=ab正方形的面积=边长×边长即S=a×a5、平行四边形的面积=底×高即S=ah5底=平行四边形的面积÷高高=平行四边形的面积÷底6、三角形的面积=底×高÷2即S=ah÷2底=三角形的面积×2÷高高=三角形的面积×2÷底7、梯形的面积=(上底+下底)×高÷2即S=(a+b)h÷2高=梯形的面积×2÷(上底+下底)上底=梯形的面积×2÷高
本文标题:最新北师大版小学数学五年级知识点归纳
链接地址:https://www.777doc.com/doc-6171746 .html