您好,欢迎访问三七文档
分类加法计数原理与分步乘法计数原理的应用(习题课)第二课时例1一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字号码?N=10×10×10×10=10000(种)例2要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?第一步:选1人上日班;第二步:选1人上晚班.有3种方法有2种方法N=3×2=6(种)例3某班有5人会唱歌,另有4人会跳舞,还有2人能歌善舞,从中任选1人表演一个节目,共可表演多少个节目?N=5+4+2×2=13(种)第1类:从会唱歌者中选1人唱歌;第2类:从会跳舞者中选1人跳舞;第3类:从能歌善舞者中选1人唱歌或跳舞;例4有架楼梯共6级,每次只允许上一级或两级,求上完这架楼梯共有多少种不同的走法?第1类:走3步第2类:走4步第3类:走5步第4类:走6步1种走法6种走法5种走法1种走法N=1+6+5+1=13(种)例5由数字0,1,2,3,4,5可以组成多少个无重复数字的三位数?百位十位个位5种4种5种N=5×5×4=100(种)例6从5人中选4人参加数、理、化学科竞赛,其中数学2人,理、化各1人,求共有多少种不同的选法?数学2人化学1人物理1人5种4种3种N=5×4×3=60(种)例7在1,2,3,…,200这些自然数中,各个数位上都不含数字8的自然数共有多少个?不含8的一位数不含8的二位数不含8的三位数8个8×9=72个9×9+1=82个N=8+72+82=162(个)例8用5种不同颜色给图中A,B,C,D四个区域涂色,每个区域只涂一种颜色,相邻区域的颜色不同,求共有多少种不同的涂色方法?ADCBN=5×4×3×3=180(种)5433例9将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端点颜色不同,如果只有5种颜色可供使用,求共有多少种不同的染色方法?SDCBA涂S点涂A点涂D点涂B、C点5437N=5×4×3×7=420(种)例10从-3,-2,-1,0,1,2,3中任取三个不同的数作为抛物线y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第一象限,问这样的抛物线共有多少条?c取值a取值b取值1种3种3种N=3×3×1=9(种)c=1a<0b>0例11某4名田径运动员报名参加100m,200m和400m三项短跑比赛.(1)每人限报1个项目,共有多少种不同的报名方法?(2)每人至少报1个项目,且每个项目限报1人,共有多少种不同的报名方法?(1)34=81种;(2)43=96种.例12:75600有多少个正约数?有多少个正奇约数?解:(1)75600的每个正约数都可以写成2i·3j·5k·7l(其中i、j、k、l为整数)的形式,其中0≤i≤4,0≤j≤3,0≤k≤2,0≤l≤1.于是,要确定75600的一个正约数,可分四步完成,即分别对i、j、k、l在各自的范围内任取一个数字,这样,i有5种选法,j有4种选法,k有3种选法,l有两种选法,根据分步计数原理,75600的正约数个数是:N=5×4×3×2=120.(2)正奇数中不含有2的因数,所以要确定75600的一个正奇数只需要分三步,即分别对j、k、l在各自的范围内任取一个数字.根据分步计数原理,75600的正奇约数的个数是N=4×3×2=24.答:75600有120个正约数,24个正奇约数.变式练习:630的正约数(包括1和630)共有多少个?630=2×32×5×7正约数:2a×3b×5c×7d2×3×2×2=24(个)例13将20个大小相同的小球放入编号为1,2,3的三个盒子中,要求每个盒子内的球数不小于该盒子的编号数,求共有多少种不同的放法?15+14+…+2+1=120(种)例14某电视节目中有A、B两个信箱,分别存放着先后两次竞猜中入围的观众来信,其中A信箱中有30封来信,B信箱中有20封来信.现由主持人从A信箱或B信箱中抽取1名幸运观众,再由该幸运观众从A、B两个信箱中各抽取1名幸运伙伴,求共有多少种不同的可能结果?30×29×20+20×19×30=17400+11400=28800(种)
本文标题:数学:1.1《分类加法计数原理与分步乘法计数原理的应用》课件(习题课)(新人教A版选修2-3)
链接地址:https://www.777doc.com/doc-6180823 .html