您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 一元二次方程期末复习总结
定义及一般形式:只含有一个未知数,未知数的最高次数是______的___式方程,叫做一元二次方程。一般形式:________________2次整ax2+bx+c=0(a≠0)练习一1、判断下面哪些方程是一元二次方程222221x2y24(1)x-3x+4=x-7()(2)2X=-4()(3)3X+5X-1=0()(4)3x-20()(5)13()(6)0()xy√√××××练习二2、把方程(1-x)(2-x)=3-x2化为一般形式是:___________,其二次项系数是____,一次项系数是____,常数项是____.3、方程(m-2)x|m|+3mx-4=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=-2D.m≠±22x2-3x-1=02-3-1C解一元二次方程的方法有几种?例:解下列方程1、用直接开平方法:(x+2)2=9解:两边开平方,得:x+2=±3∴x=-2±3∴x1=1,x2=-5右边开平方后,根号前取“±”。例:解下列方程2、用配方法解方程4x2-8x-5=0两边加上相等项“1”。解:移项,得:3x2-4x-7=0a=3b=-4c=-7∵b2-4ac=(-4)2-4×3×(-7)=100>0∴∴x1=x2=-135261004x先变为一般形式,代入时注意符号。3、用公式法解方程3x2=4x+737把y+2看作一个未知数,变成(ax+b)(cx+d)=0形式。4、用分解因式法解方程:(y+2)2=3(y+2)解:原方程化为(y+2)2-3(y+2)=0(y+2)(y+2-3)=0(y+2)(y-1)=0y+2=0或y-1=0∴y1=-2y2=1①同除二次项系数化为1;②移常数项到右边;③两边加上一次项系数一半的平方;④化直接开平方形式;⑤解方程。步骤归纳①先化为一般形式;②再确定a、b、c,求b2-4ac;③当b2-4ac≥0时,代入公式:2±42bbacxa--=步骤归纳若b2-4ac<0,方程没有实数根。①右边化为0,左边化成两个因式的积;②分别令两个因式为0,求解。步骤归纳2小结:选择方法的顺序是:直接开平方法→分解因式法→配方法→公式法分解因式分解因式配方公式配方分解因式公式直接开平方练习三①(2x+1)2=64法②(x-2)2-4(x+1)2=0法③(5x-4)2-(4-5x)=0法④x2-4x-10=0法⑤3x2-4x-5=0法⑥x2+6x-1=0法⑦3x2-8x-3=0法⑧y2-y-1=0法选用适当方法解下列一元二次方程一元二次方程一元二次方程的定义一元二次方程的解法一元二次方程的应用定义:一个未知数,最高次数是2,整式方程一般形式:ax²+bx+c=0(a0)直接开平方法:适应于形如(x-k)²=h(h0)型配方法:适应于任何一个一元二次方程公式法:适应于任何一个一元二次方程因式分解法:适应于左边能分解为两个一次式的积,右边是0的方程中考直击你来做一做1.(09威海)若关于的一元二次方程x2+(k+3)x+k=0的一个根是-2,则另一个根是______.2.(09山西省)请你写出一个有一根为1的一元二次方程:.13.(09黄石市)三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对4.(09成都)若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是()A.k-1B.k-1且k≠0C.k1D.k1且k≠0BB5.(09甘肃庆阳)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米A6.(09烟台市)设a,b是方程x2+x-2009=0的两个实数根,则a2+2a+b的值为()A.2006B.2007C.2008D.2009C完成课堂达标测试1.(09重庆綦江)一元二次方程x2=16的解是.2.(09甘肃庆阳)若关于x的方程x2+2x+k-1=0的一个根是0,则k=.3.(09湖北十堰市)方程(x+2)(x-1)=0的解为.x1=4,x2=-41x1=-2,x2=14.(09太原市)用配方法解方程x2-2x-5=0时,原方程应变形为()A.(x+1)2=6B.(x-1)2=6C.(x+2)2=9D.(x-2)2=95.(09衡阳市)两圆的圆心距为3,两圆的半径分别是方程x2-4x+3=0的两个根,则两圆的位置关系是()A.相交B.外离C.内含D.外切BA6.(09日照)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1B.2C.-1D.-27.(09包头)关于x的一元二次方程x2-mx+2m-1=0的两个实数根分别是x1,x2且x12+x22=7,则(x1-x2)2的值是()A.1B.12C.13D.25DC8.(09潍坊)关于x的方程(a-6)x2-8x+6=0有实数根,则整数a的最大值是()A.6B.7C.8D.99.(09青海)方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.不能确定CCD10.(09潍坊)已知关于的一元二次方程x2-6x+k+1=0的两个实数根是x1,x2,且x12+x22=24,则k的值是()A.8B.-7C.6D.511.(08桂林)已知方程x2+3x-1=0的两根为α、β,那么.-11212.(2008年·南通市)若关于x的方程x2+(2k-1)x+k2-=0有两个相等的实数根,则k=.47D13.(08大连)一元二次方程x2+2x+4=0的根的情况是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根A15.(08长沙)下列一元一次方程中,有实数根的是()A.x2-x+1=0B.x2-2x+3=0C.x2+x-1=0D.x2+4=0C14.(08安徽)方程x2-3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根17.(09北京)若把代数式x2-2x-3化为(x-m)2+k的形式,其中m,k为常数,则m+k=.-318.若关于x的一元二次方程x2+2x-k=0没有实数根,则k的取值范围是.k-1例6.某药品经过两次降价,每瓶零售价由100元降为81元,已知两次降价百分率相同,求两次降价的百分率。认真想一想增长率类应用题:1.(09兰州)2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。受金融危机的影响,某商品原价为200元,连续两次降价a%后售价为148元,下面所列方程正确的是()A.200(1+a%)2=148;B.200(1-a%)2=148;C.200(1-2a%)=148;D.200(1+a2%)=148;B2.甲公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年平均增长率为多少?得根据题意设每年平均增长率为解,,:x.4.48)1(402x:解这个方程).,(01.21.11%;101.1121舍去不合题意xx%.10:每年的平均增长率为答3.某电冰箱厂每个月的产量都比上个月增长的百分数相同。已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了12000台,求该厂今年产量的月平均增长率为多少?得根据题意均增长率为设该厂今年产量的月平解,,:x.2.115)1(52xx:整理得).,(02.11075%;202.0107521舍去不合题意xx.0625252xx:解得%.20:增长率为该厂今年产量的月平均答面积类应用题:1.(09年甘肃庆阳)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米A面积类应用题:2.(08十堰)如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?BADC墙如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,水渠的宽度都相等.水渠把耕地分成面积均为885m2的6个矩形小块,水渠应挖多宽.得根据题意设水渠的宽度解,,:xm.885660)292(xx:整理得).,(105;121舍去不合题意xx,01051062xx:解得.1:m水渠的宽度为答两个数的差等于4,积等于45,求这两个数.:,,x解设较小的数为根据题意得.454xx.04542xx整理得.9,521xx解得.5494,9454xx或.5,99,5:或这两个数为答一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手.这次会议到会的人数是多少?得根据题意设这次到会的人数为解,,:x.6621xx:整理得).,(02231;12223121舍去不合题意xx.01322xx:解得.12:人这次到会的人数为答ABCPQ(1)用含x的代数式表示BQ、PB的长度;(2)当为何值时,△PBQ为等腰三角形;(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由。其它类型应用题:4.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止。连结PQ。设动点运动时间为x秒。某水果批发商场经销一种高档水果如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?商场最多每天可赚多少钱?认真做一做将一条长为56cm的铁丝剪成两段,并把每一段围成一个正方形.(1).要使这两个正方形的面积之和等于100cm2,该怎样剪?(2).要使这两个正方形的面积之和等于196cm2,该怎样剪?(3).这两个正方形的面积之和可能等于200m2吗?得根据题意设剪下的一段为解,,.1:xcm:整理得.32245656;24325656xx或,0768562xx:解得.24,3221xx.100,2432:2cmcmcm于可使正方形的面积和等或剪下的一段为答.100456)4(22xx将一条长为56cm的铁丝剪成两段,并把每一段围成一个正方形.(1).要使这两个正方形的面积之和等于100cm2,该怎样剪?(2).要使这两个正方形的面积之和等于196cm2,该怎样剪?(3).这两个正方形的面积之和可能等于200m2吗?得根据题意设剪下的一段为解,,.2:xcm:整理得,0562xx:解得.196,:2cm面积能等于可围成一个正方形的其不剪答.196456)4(22xx.,0,5621舍去不合题意xx将一条长为56cm的铁丝剪成两段,并把每一段围成一个正方形.(1).要使这两个正方形的面积之和等于100cm2,该怎样剪?(2).要使这两个正方形的面积之和等于196cm2,该怎样剪?(3).这两个正方形的面积之和可能等于200m2吗?得根据题意设剪下的一段为解,,.3:xcm.200456)4(22xx:整理得.,081828;568182821舍去均不合题意xx,034562xx:解得.818282818256x.200,:2cm等于正方形的面积和不可能不能剪答炀帝
本文标题:一元二次方程期末复习总结
链接地址:https://www.777doc.com/doc-6212133 .html