您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 选修2-3教案1.3.1二项式定理
1.3.1二项式定理教学目标:知识与技能:进一步掌握二项式定理和二项展开式的通项公式过程与方法:能解决二项展开式有关的简单问题情感、态度与价值观:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。教学重点:二项式定理及通项公式的掌握及运用奎屯王新敞新疆教学难点:二项式定理及通项公式的掌握及运用奎屯王新敞新疆授课类型:新授课奎屯王新敞新疆课时安排:3课时奎屯王新敞新疆教具:多媒体、实物投影仪奎屯王新敞新疆内容分析:二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成.二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质2、需要用到不太熟悉的数学归纳法.在教学中,努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习.教学过程:一、复习引入:⑴22202122222()2abaabbCaCabCb;⑵33223031222333333()33abaababbCaCabCabCb奎屯王新敞新疆⑶4()()()()()ababababab的各项都是4次式,即展开式应有下面形式的各项:4a,3ab,22ab,3ab,4b,展开式各项的系数:上面4个括号中,每个都不取b的情况有1种,即04C种,4a的系数是04C;恰有1个取b的情况有14C种,3ab的系数是14C,恰有2个取b的情况有24C种,22ab的系数是24C,恰有3个取b的情况有34C种,3ab的系数是34C,有4都取b的情况有44C种,4b的系数是44C,∴40413222334444444()abCaCabCabCabCb.二、讲解新课:二项式定理:01()()nnnrnrrnnnnnnabCaCabCabCbnN⑴()nab的展开式的各项都是n次式,即展开式应有下面形式的各项:na,nab,…,nrrab,…,nb,⑵展开式各项的系数:每个都不取b的情况有1种,即0nC种,na的系数是0nC;恰有1个取b的情况有1nC种,nab的系数是1nC,……,恰有r个取b的情况有rnC种,nrrab的系数是rnC,……,有n都取b的情况有nnC种,nb的系数是nnC,∴01()()nnnrnrrnnnnnnabCaCabCabCbnN,这个公式所表示的定理叫二项式定理,右边的多项式叫()nab的二项展开式,⑶它有1n项,各项的系数(0,1,)rnCrn叫二项式系数,⑷rnrrnCab叫二项展开式的通项,用1rT表示,即通项1rnrrrnTCab.⑸二项式定理中,设1,abx,则1(1)1nrrnnnxCxCxx奎屯王新敞新疆三、讲解范例:例1.展开41(1)x.解一:411233444411111(1)1()()()()CCCxxxxx23446411xxxx.解二:4444413123444111(1)()(1)()1xxCxCxCxxxx23446411xxxx.例2.展开61(2)xx.解:66311(2)(21)xxxx61524332216666631[(2)(2)(2)(2)(2)(2)1]xCxCxCxCxCxx32236012164192240160xxxxxx.例3.求12()xa的展开式中的倒数第4项奎屯王新敞新疆解:12()xa的展开式中共13项,它的倒数第4项是第10项,9129933939911212220TCxaCxaxa.例4.求(1)6(23)ab,(2)6(32)ba的展开式中的第3项.解:(1)24242216(2)(3)2160TCabab,(2)24242216(3)(2)4860TCbaba.点评:6(23)ab,6(32)ba的展开后结果相同,但展开式中的第r项不相同奎屯王新敞新疆例5.(1)求93()3xx的展开式常数项;(2)求93()3xx的展开式的中间两项奎屯王新敞新疆解:∵3992921993()()33rrrrrrrxTCCxx,∴(1)当390,62rr时展开式是常数项,即常数项为637932268TC;(2)93()3xx的展开式共10项,它的中间两项分别是第5项、第6项,489912593423TCxx,159510932693378TCxx奎屯王新敞新疆例6.(1)求7(12)x的展开式的第4项的系数;(2)求91()xx的展开式中3x的系数及二项式系数奎屯王新敞新疆解:7(12)x的展开式的第四项是333317(2)280TCxx,∴7(12)x的展开式的第四项的系数是280.(2)∵91()xx的展开式的通项是9921991()(1)rrrrrrrTCxCxx,∴923r,3r,∴3x的系数339(1)84C,3x的二项式系数3984C.例7.求42)43(xx的展开式中x的系数奎屯王新敞新疆分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开奎屯王新敞新疆解:(法一)42)43(xx42]4)3[(xx02412344(3)(3)4CxxCxx22224(3)4Cxx3234444(3)44CxxC,显然,上式中只有第四项中含x的项,∴展开式中含x的项的系数是76843334C(法二):42)43(xx4)]4)(1[(xx44)4()1(xx)(4434224314404CxCxCxCxC0413222334444444(4444)CxCxCxCxC∴展开式中含x的项的系数是34C334444C768.例8.已知nmxxxf4121)(*(,)mnN的展开式中含x项的系数为36,求展开式中含2x项的系数最小值奎屯王新敞新疆分析:展开式中含2x项的系数是关于nm,的关系式,由展开式中含x项的系数为36,可得3642nm,从而转化为关于m或n的二次函数求解奎屯王新敞新疆解:1214mnxx展开式中含x的项为1124mnCxCx11(24)mnCCx∴11(24)36mnCC,即218mn,1214mnxx展开式中含2x的项的系数为t222224mnCC222288mmnn,∵218mn,∴182mn,∴222(182)2(182)88tnnnn216148612nn23715316()44nn,∴当378n时,t取最小值,但*nN,∴5n时,t即2x项的系数最小,最小值为272,此时5,8nm.例9.已知41()2nxx的展开式中,前三项系数的绝对值依次成等差数列,(1)证明展开式中没有常数项;(2)求展开式中所有的有理项奎屯王新敞新疆解:由题意:1221121()22nnCC,即0892nn,∴8(1nn舍去)∴81841()2rrrrTCxx82481()2rrrrCxx1638412rrrrCx08rrZ①若1rT是常数项,则04316r,即0316r,∵rZ,这不可能,∴展开式中没有常数项;②若1rT是有理项,当且仅当4316r为整数,∴08,rrZ,∴0,4,8r,即展开式中有三项有理项,分别是:41xT,xT8355,292561xT奎屯王新敞新疆例10.求60.998的近似值,使误差小于0.001.解:66011666660.998(10.002)(0.002)(0.002)CCC,展开式中第三项为2260.0020.00006C,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998CC,一般地当a较小时(1)1nana奎屯王新敞新疆四、课堂练习:1.求623ab的展开式的第3项.2.求632ba的展开式的第3项.3.写出n33)x21x(的展开式的第r+1项.4.求732xx的展开式的第4项的二项式系数,并求第4项的系数.5.用二项式定理展开:(1)53()ab;(2)52()2xx.6.化简:(1)55)x1()x1(;(2)4212142121)x3x2()x3x2(7.5lgxxx展开式中的第3项为610,求x.8.求nxx21展开式的中间项奎屯王新敞新疆答案:1.262242216(2)(3)2160TCabab奎屯王新敞新疆2.262224216(3)(2)4860TCbaab奎屯王新敞新疆3.2331311()()22rnrrnrrrrnnTCxCxx奎屯王新敞新疆4.展开式的第4项的二项式系数3735C,第4项的系数3372280C奎屯王新敞新疆5.(1)335543222333()510105abaababababbbb;(2)5223215()52040322328xxxxxxxxxxxxx.6.(1)552(1)(1)22010xxxx;(2)1111442222432(23)(23)192xxxxxx奎屯王新敞新疆7.5lgxxx展开式中的第3项为232lg632lg551010xxCxx22lg3lg50xx5lg1,lg2xx1010,1000xx奎屯王新敞新疆8.nxx21展开式的中间项为2(1)nnnC奎屯王新敞新疆五、小结:二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点奎屯王新敞新疆六、课后作业:P36习题1.3A组1.2.3.4七、板书设计(略)奎屯王新敞新疆八、教学反思:(a+b)n=这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的,其中rnC(r=0,1,2,……,n)叫做,叫做二项展开式的通项,它是展开式的第项,展开式共有个项.掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。培养归纳猜想,抽象概括,演绎证明等理性思维能力。教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体,教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。二项式定理是指rrnrnnnnnnnbababaabaCCC)(22211nnnbC这样一个展开式的公式.它是(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3…等等展开式的一般形式,在初等数学中它各章节的联系似乎不太多,而在高等数学中它是许
本文标题:选修2-3教案1.3.1二项式定理
链接地址:https://www.777doc.com/doc-6213139 .html