您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 物理化学热力学第一定律习题答案
第二章热力学第一定律2-11mol理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W。解:体系压力保持恒定进行升温,即有P外=P,即反抗恒定外压进行膨胀,JTnRnRTnRTpVpVVVpWamb314.8)(1212122-2系统由相同的始态经过不同途径达到相同的末态。若途径a的Qa=2.078kJ,Wa=-4.157kJ;而途径b的Qb=-0.692kJ。求Wb。解:应用状态函数法。因两条途径的始末态相同,故有△Ua=△Ub,则bbaaWQWQ所以有,kJQWQWbaab387.1692.0157.4078.22-34mol某理想气体,温度升高20℃,求△H-△U的值。解:方法一:665.16J208.3144)20()(2020,,20,20,TKTnRnRdTdTCCndTnCdTnCUHKTTKTTmVmpKTTmVKTTmp方法二:可以用△H=△U+△(PV)进行计算。2-4某理想气体,1.5VmCR。今有该气体5mol在恒容下温度升高50℃,求过程的W,Q,△H和△U。解:恒容:W=0;kJJKnCTKTnCdTnCUmVmVKTTmV118.33118503145.823550)50(,,50,kJJKRCnTKTnCdTnCHmVmpKTTmp196.55196503145.825550)()50(,,50,根据热力学第一定律,:W=0,故有Q=△U=3.118kJ2-5某理想气体,2.5VmCR。今有该气体5mol在恒压下温度降低50℃,求过程的W,Q,△H和△U。解:kJJKnCTKTnCdTnCUmVmVKTTmV196.55196503145.8255)50()50(,,50,kJJKnCTKTnCdTnCHmpmpKTTmp275.77275503145.8275)50()50(,,50,kJkJkJQUWkJHQ079.2)725.7(196.5275.72-61mol某理想气体,RCmP27,。由始态100kPa,50dm3,先恒容加热使压力升高至200kPa,再恒压泠却使体积缩小至25dm3。求整个过程的W,Q,△H和△U。解:整个过程示意如下:333203125200150200150100121dmkPaTmoldmkPaTmoldmkPaTmolWWKnRVpT40.6013145.8110501010033111KnRVpT80.12023145.8110501020033222KnRVpT40.6013145.8110251020033333kJJVVpW00.5500010)5025(10200)(332322kJWkJWW00.5WW;00.5;021210H0,U;40.60131KTT-5.00kJ-WQ0,U2-74mol某理想气体,RCmP25,。由始态100kPa,100dm3,先恒压加热使体积升增大到150dm3,再恒容加热使压力增大到150kPa。求过程的W,Q,△H和△U。解:过程为330323115015041501004100100421dmkPaTmoldmkPaTmoldmkPaTmolWWKnRVpT70.3003145.84101001010033111;KnRVpT02.4513145.84101501010033222KnRVpT53.6763145.84101501015033333kJJVVpW00.5500010)100150(10100)(331311kJWkJWW00.5WW;00.5;02112)(23)(13,,3131TTRndTRCndTnCUTTmpTTmVkJJ75.1818749)70.30053.676(314.8234)(2513,31TTRndTnCHTTmPkJJ25.3131248)70.30053.676(314.8254kJkJkJWUQ23.75)00.5(75.182-8单原子理想气体A与双原子理想气体B的混合物共10mol,摩尔分数yB=0.4,始态温度T1=400K,压力p1=200kPa。今该混合气体绝热反抗恒外压p=100kPa膨胀到平衡态。求末态温度T2及过程的W,△U,△H。解:先求双原子理想气体B的物质的量:n(B)=yB×n=0.4×10mol=4mol;则单原子理想气体A的物质的量:n(A)=(10-4)mol=6mol单原子理想气体A的RCmV23,,双原子理想气体B的RCmV25,过程绝热,Q=0,则△U=W)())(()())(()(1212,12,VVpTTBCBnTTACAnambmVmV1121212)(254)(236pnRTpnRTpTTRTTRambamb代入得T2=331.03K33222227522.010000003.331314.810//mmpnRTpnRTVabm3311116628.0200000400314.810/mmpnRTVkJJVVpWUamb894.10)16628.027522.0(10100)(312kJJJVpVpUpVUH628.1616628)16628.01020027522.010(100-10894J)()(331122△H还可以由分别计算△HA和△HB之后求和。(请同学们自行计算)2-9在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2mol,0℃的单原子理想气体A及5mol,100℃的双原子理想气体B,两气体的压力均为100kPa。活塞外的压力维持100kPa不变。今将容器内的绝热隔板撤去,使两种气体混合达到平衡态。求末态温度T及过程的W,△U。解:单原子理想气体A的RCmp25,,双原子理想气体B的RCmp27,因活塞外的压力维持100kPa不变,过程绝热恒压,Q=Qp=△H=0,于是有0)15.373(5.17)15.273(50)15.373(275)15.273(2520)15.373)(()()15.273)(()(,,KTKTKTRKTRKTBCBnKTACAnmpmp于是有22.5T=7895.875K得T=350.93KW-369.3J)2309.4-1940.1()15.37393.350(23145.855)15.27393.350(23145.832)15.373)(()()15.273)(()(,,JJJKTBCBnKTACAnUmVmV2-10求1molN2(g)在300K恒温下从2dm3可逆膨胀到40dm3这一过程的体积功Wr,Q,△U及△H。假设N2(g)为理想气体。解:由于N2(g)视为理想气体,则理想气体恒温可逆膨胀功为)/ln(12VVnRTWr=-1×8.3145×300×ln(40÷2)J=-7472J=-7.472kJ△U=0,△H=0,(恒温,理想气体)△U=Q+W所以Q=-W=7.472kJ2-11某双原子理想气体10mol从始态350K,200kPa经过如下四个不同过程达到各自的平衡态,求各过程的功W。(1)恒温可逆膨胀到50kPa;(2)恒温反抗50kPa恒外压不可逆膨胀;(3)绝热可逆膨胀到50kPa;(4)绝热反抗50kPa恒外压不可逆膨胀。解:(1)理想气体恒温可逆膨胀到50kPa:kJJJppnRTWr342.4040342102001050ln3503145.810/ln3312(2)恒温反抗50kPa恒外压不可逆膨胀:kJJJppnRTpnRTpVVpWambambamb826.2121826)200/50(13503145.810)/(p-1-nRT)/()/()(1amb112(3)绝热可逆膨胀到50kPa:KKTppTRRCRmp53.235350102001050)2/7/(331/122,绝热,Q=0,kJJJTTCndTnCUWTTmVmV793.2323793)35053.235(28.3145510)(12,,21(4)绝热反抗50kPa恒外压不可逆膨胀绝热,Q=0,UW)()2/5()/()/()()(1211212,12TTRnpnRTpnRTpTTnCVVpambambmVabm上式两边消去nR并代入有关数据得KTKT3505.25.235025.0223.5T2=2.75×350K故T2=275KkJJJTTCndTnCUWTTmVmV590.1515590)350275(28.3145510)(12,,212-120.5mol双原子理想气体1mol从始态300K,200kPa,先恒温可逆膨胀到压力为50kPa,再绝热可逆压缩末态压力200kPa。求末态温度T及整个过程的Q,W,△U及△H。解:整个过程如下molpkPaTmolpkPaKpmolkPaK5.02005.050300T5.0200300T32211绝热可逆压缩恒温可逆膨胀理想气体绝热可逆过程:KKTppTRRCRmp80.445400105010200)2/7/(332/23,恒温可逆膨胀过程:kJJJppnRTWr729.11729102001050ln3003145.85.0/ln3312因是理想气体,恒温,△U恒温=△H恒温=0绝热可逆压缩:Q=0,故kJJJTTRTTnCUWmV515.12.1515)30080.445(314.8255.0)(255.0)(21,绝绝kJJJTTRTTnCHmp121.23.2121)30080.445(314.8275.0)(275)(11,绝故整个过程:W=Wr+W绝=(-1.729+1.515)kJ=0.214kJ△U=△Ur+△U绝=(0+1.515)=1.515kJ△H=△Hr+△H绝=(0+2.121)=2.121kJ2-13已知水(H2O,l)在100℃的饱和蒸气压p*=101.325kPa,在此温度、压力下水的摩尔蒸发焓1668.40molkJHmvap。求在100℃,101.325kPa下使1mol水蒸气全部凝结成液体水时的Q,W,△U及△H。设水蒸气适用理想气体状态方程。解:凝结过程为kPaCgOH325.101,100),(mol102kPaClOmolH325.101,100),(102△H(凝结)=—△H(蒸发)HkJkJHnQQmvapp668.40)668.40(1)(kJJRTnpVVVpWggglamb102.3)15.373314.81()(kJkJWQU566.37)102.3668.40(2-14100kPa下,冰(H2O,s)的熔点为0℃,在此条件下冰的摩尔熔化焓1012.6molkJHmfus
本文标题:物理化学热力学第一定律习题答案
链接地址:https://www.777doc.com/doc-6222613 .html