您好,欢迎访问三七文档
1一、旋转圆问题在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆,用这一规律可快速确定粒子的运动轨迹。例1.如图8所示,S为电子源,它在纸面360°度范围内发射速度大小为v0,质量为m,电量为q的电子(q0),MN是一块足够大的竖直挡板,与S的水平距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为mv0/qL,求挡板被电子击中的范围为多大?例2.如图10所示,在0≤x≤A.0≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内。己知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。求最后离开磁场的粒子从粒子源射出时的:(1)速度大小;(2)速度方向与y轴正方向夹角正弦。强化训练:1.如图所示,S处有一电子源,可向纸面内任意方向发射电子,平板MN垂直于纸面,在纸面内的长度L=9.1cm,中点O与S间的距离d=4.55cm,MN与SO直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B=2.0×10-4T,电子质量m=9.1×10-31kg,电量e=-1.6×10-19C,不计电子重力。电子源发射速度v=1.6×106m/s的一个电子,该电子打在板上可能位置的区域的长度为l,则A.θ=90°时,l=9.1cmB.θ=60°时,l=9.1cmC.θ=45°时,l=4.55cmD.θ=30°时,l=4.55cm2、23、如图所示,以直角三角形AOC为边界的有界匀强磁场区域,磁感应强度为B,∠A=60°,AO=a。在O点放置一个粒子源,可以向各个方向发射某种带负电粒子,粒子的比荷为qm,发射速度大小都为v0,且满足v0=qBam,发射方向由图中的角度θ表示。对于粒子进入磁场后的运动(不计重力作用),下列说法正确的是()A.粒子有可能打到A点B.以θ<60°飞入的粒子在磁场中运动的时间最短C.以θ<30°飞入的粒子在磁场中运动的时间都相等D.在AC边界上只有一半区域有粒子射出二、磁聚焦带电粒子以速度v从圆周上a点向不同方向射入圆形磁场区,若粒子的轨道半径R等于圆形磁场区半径r(R=r),则所有粒子均沿平行于a点切线的方向射出磁场。1.如图所示,真空中有一以(r,0)为圆心,半径为r的圆柱形匀强磁场区域,磁场的磁感应强度大小为B,方向垂直于纸面向里,在y≥r的范围内,有方向水平向左的匀强电场,电场强度的大小为E;从O点向不同方向发射速率相同的质子,质子的运动轨迹均在纸面内.已知质子的电量为e,质量为m,质子在磁场中的偏转半径也为r,不计重力及阻力的作用,求:(1)质子射入磁场时的速度大小;(2)速度方向沿x轴正方向射入磁场的质子,到达y轴所需的时间;(3)速度方向与x轴正方向成30°角(如图中所示)射入磁场的质子,到达y轴的位置坐标.答:(1)m/eBrv(2)eEmr2eB2mttt21(3)mEer3Brvty22、如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。O点处有一放射源,沿纸面向各方向射出速率均为v的某种带电粒子,3带电粒子在磁场中做圆周运动的半径是圆形磁场区域半径的两倍。已知该带电粒子的质量为m、电荷量为q,不考虑带电粒子的重力。(1)推导带电粒子在磁场空间做圆周运动的轨道半径;(2)求带电粒子通过磁场空间的最大偏转角;(3)沿磁场边界放置绝缘弹性挡板,使带电粒子与挡板碰撞后以原速率弹回,且其电荷量保持不变。若从O点沿x轴正方向射入磁场的粒子速度减小为0.5v,求该粒子第一次回到O点经历的时间。答案:(1)mvBq(2)60°(3)2πmBq3、如图所示,半圆有界匀强磁场的圆心O1在x轴上,OO1距离等于半圆磁场的半径,磁感应强度大小为B1。虚线MN平行x轴且与半圆相切于P点。在MN上方是正交的匀强电场和匀强磁场,电场场强大小为E,方向沿x轴负向,磁场磁感应强度大小为B2。B1、B2均垂直纸面,方向如图所示。有一群完全相同的正粒子,以相同的速率沿不同方向从原点O射入第Ⅰ象限,其中沿x轴正方向进入磁场的粒子经过P点射入MN后,恰好在正交的电磁场中做直线运动,粒子质量为m,电荷量为q(粒子重力不计)。(1)求粒子初速度大小和有界半圆磁场的半径;(2)若撤去磁场B2,求经过P点射入电场的粒子从y轴射出电场时距离O点的距离;(3)试证明:题中所有从原点O进入第Ⅰ象限的粒子都能在正交的电磁场中做直线运动。答案:(1)mEqB1B2(2)mEqB21B1+2B1B2(3)见解析三、缩放圆法带电粒子以大小不同,方向相同的速度垂直射入匀强磁场中,作圆周运动的半径随着速度的变化而变化,因此其轨迹为半径缩放的动态圆(如图12),利用缩放的动态圆,可4以探索出临界点的轨迹,使问题得到解决。1.如图13所示,匀强磁场中磁感应强度为B,宽度为d,一电子从左边界垂直匀强磁场射入,入射方向与边界的夹角为θ,已知电子的质量为m,电量为e,要使电子能从轨道的另一侧射出,求电子速度大小的范围。2.如图,一足够长的矩形区域abcd内充满磁感应强度为B,方向垂直纸面向里的匀强磁场,现从矩形区域ad边中点O射入与Od边夹角为30°,大小为v0的带电粒子,已知粒子质量为m,电量为q,ad边长为L,ab边足够长,粒子重力忽略不计。求:(1)试求粒子能从ab边上射出磁场的v0的大小范围;(2)粒子在磁场中运动的最长时间和在这种情况下粒子从磁场中射出所在边上位置的范围。3、如图15所示,左边有一对平行金属板,两板的距离为d,电压为U,两板间有匀强磁场,磁感应强度为B0,方面平行于板面并垂直纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直纸面向里。假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板间的区域,并经EF边中点H射入磁场区域。不计重力。(1)已知这些离子中的离子甲到达边界EG后,从边界EF穿出磁场,求离子甲的质量;(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为3a/4,求离子乙的质量;(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达?
本文标题:粒子源问题
链接地址:https://www.777doc.com/doc-6234569 .html