您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 直线的两点式方程教案
直线的两点式方程教案一、教学目标1、知识与技能(1)握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。2、过程与方法让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。二、教学重点、难点:1、重点:直线方程两点式。2、难点:两点式推导过程的理解。三、教学设想问题1、利用点斜式解答如下问题:(1)已知直线l经过两点)5,3(),2,1(21PP,求直线l的方程.(2)已知两点),(),,(222211yxPxxP其中),(2121yyxx,求通过这两点的直线方程。设计意图遵循由浅及深,由特殊到一般的认知规律。使学生在已有的知识基础上获得新结论,达到温故知新的目的。师生活动教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:(1))1(232xy(2))(112121xxxxyyyy教师指出:当21yy时,方程可以写成),(2121121121yyxxxxxxyyyy由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式问题2、若点),(),,(222211yxPxxP中有21xx,或21yy,此时这两点的直线方程是什么?设计意图使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式。师生活动教师引导学生通过画图、观察和分析,发现当21xx时,直线与x轴垂直,所以直线方程为:1xx;当21yy时,直线与y轴垂直,直线方程为:1yy。问题3、例题教学已知直线l与x轴的交点为A)0,(a,与y轴的交点为B),0(b,其中0,0ba,求直线l的方程。设计意图使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形。师生活动教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l的方程?那种方法更为简捷?然后由求出直线方程:1byax教师指出:ba,的几何意义和截距式方程的概念。问题4、例题教学已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程。设计意图让学生学会根据题目中所给的条件,选择恰当的直线方程解决问题。师生活动教师给出中点坐标公式,学生根据自己的理解,选择恰当方法求出边BC所在的直线方程和该边上中线所在直线方程。在此基础上,学生交流各自的作法,并进行比较。5、课堂练习学生独立完成,教师检查、反馈。6、小结增强学生对直线方种四种形式(点斜式、斜截式、两点式、截距式)互相之间的联系的理解。教师提出:(1)到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?(2)要求一条直线的方程,必须知道多少个条件?7、布置作业巩固深化,培养学生的独立解决问题的能力。学生课后完成
本文标题:直线的两点式方程教案
链接地址:https://www.777doc.com/doc-6235283 .html