您好,欢迎访问三七文档
什么是无线Mesh网络?无线网络技术的发展日新月异,各种802.11x标准不断被更新,新的无线网络架构和技术也不断被提出。正当无线局域网(WLAN)的发展方兴未艾时,一种新的无线Mesh网络(无线网状网络)又出现了。无线Mesh网络的核心指导思想是让网络中的每个节点都可以发送和接收信号,传统的WLAN一直存在的可伸缩性低和健壮性差等诸多问题由此迎刃而解。无线Mesh技术的出现,代表着无线网络技术的又一大跨越,有极为广阔的应用前景。什么是无线Mesh网络?无线Mesh网络(无线网状网络)也称为“多跳(multi-hop)”网络,它是一种与传统无线网络完全不同的新型无线网络技术。在传统的无线局域网(WLAN)中,每个客户端均通过一条与AP相连的无线链路来访问网络,用户如果要进行相互通信的话,必须首先访问一个固定的接入点(AP),这种网络结构被称为单跳网络。而在无线Mesh网络中,任何无线设备节点都可以同时作为AP和路由器,网络中的每个节点都可以发送和接收信号,每个节点都可以与一个或者多个对等节点进行直接通信。这种结构的最大好处在于:如果最近的AP由于流量过大而导致拥塞的话,那么数据可以自动重新路由到一个通信流量较小的邻近节点进行传输。依此类推,数据包还可以根据网络的情况,继续路由到与之最近的下一个节点进行传输,直到到达最终目的地为止。这样的访问方式就是多跳访问。其实人们熟知的Internet就是一个Mesh网络的典型例子。例如,当我们发送一份E-mail时,电子邮件并不是直接到达收件人的信箱中,而是通过路由器从一个服务器转发到另外一个服务器,最后经过多次路由转发才到达用户的信箱。在转发的过程中,路由器一般会选择效率最高的传输路径,以便使电子邮件能够尽快到达用户的信箱。与传统的交换式网络相比,无线Mesh网络去掉了节点之间的布线需求,但仍具有分布式网络所提供的冗余机制和重新路由功能。在无线Mesh网络里,如果要添加新的设备,只需要简单地接上电源就可以了,它可以自动进行自我配置,并确定最佳的多跳传输路径。添加或移动设备时,网络能够自动发现拓扑变化,并自动调整通信路由,以获取最有效的传输路径。Mesh网络的五大优势与传统的WLAN相比,无线Mesh网络具有几个无可比拟的优势:1.快速部署和易于安装。安装Mesh节点非常简单,将设备从包装盒里取出来,接上电源就行了。由于极大地简化了安装,用户可以很容易增加新的节点来扩大无线网络的覆盖范围和网络容量。在无线Mesh网络中,不是每个Mesh节点都需要有线电缆连接,这是它与有线AP最大的不同。Mesh的设计目标就是将有线设备和有线AP的数量降至最低,因此大大降低了总拥有成本和安装时间,仅这一点带来的成本节省就是非常可观的。无线Mesh网络的配置和其他网管功能与传统的WLAN相同,用户使用WLAN的经验可以很容易应用到Mesh网络上。2.非视距传输(NLOS)。利用无线Mesh技术可以很容易实现NLOS配置,因此在室外和公共场所有着广泛的应用前景。与发射台有直接视距的用户先接收无线信号,然后再将接收到的信号转发给非直接视距的用户。按照这种方式,信号能够自动选择最佳路径不断从一个用户跳转到另一个用户,并最终到达无直接视距的目标用户。这样,具有直接视距的用户实际上为没有直接视距的邻近用户提供了无线宽带访问功能。无线Mesh网络能够非视距传输的特性大大扩展了无线宽带的应用领域和覆盖范围。3.健壮性。实现网络健壮性通常的方法是使用多路由器来传输数据。如果某个路由器发生故障,信息由其他路由器通过备用路径传送。E-mail就是这样一个例子,邮件信息被分成若干数据包,然后经多个路由器通过Internet发送,最后再组装成到达用户收件箱里的信息。Mesh网络比单跳网络更加健壮,因为它不依赖于某一个单一节点的性能。在单跳网络中,如果某一个节点出现故障,整个网络也就随之瘫痪。而在Mesh网络结构中,由于每个节点都有一条或几条传送数据的路径。如果最近的节点出现故障或者受到干扰,数据包将自动路由到备用路径继续进行传输,整个网络的运行不会受到影响。4.结构灵活。在单跳网络中,设备必须共享AP。如果几个设备要同时访问网络,就可能产生通信拥塞并导致系统的运行速度降低。而在多跳网络中,设备可以通过不同的节点同时连接到网络,因此不会导致系统性能的降低。Mesh网络还提供了更大的冗余机制和通信负载平衡功能。在无线Mesh网络中,每个设备都有多个传输路径可用,网络可以根据每个节点的通信负载情况动态地分配通信路由,从而有效地避免了节点的通信拥塞。而目前单跳网络并不能动态地处理通信干扰和接入点的超载问题。5.高带宽。无线通信的物理特性决定了通信传输的距离越短就越容易获得高带宽,因为随着无线传输距离的增加,各种干扰和其他导致数据丢失的因素随之增加。因此选择经多个短跳来传输数据将是获得更高网络带宽的一种有效方法,而这正是Mesh网络的优势所在。在Mesh网络中,一个节点不仅能传送和接收信息,还能充当路由器对其附近节点转发信息,随着更多节点的相互连接和可能的路径数量的增加,总的带宽也大大增加。此外,因为每个短跳的传输距离短,传输数据所需要的功率也较小。既然多跳网络通常使用较低功率将数据传输到邻近的节点,节点之间的无线信号干扰也较小,网络的信道质量和信道利用效率大大提高,因而能够实现更高的网络容量。比如在高密度的城市网络环境中,Mesh网络能够减少使用无线网络的相邻用户的相互干扰,大大提高信道的利用效率。无线Mesh网络标准散见于802.11s、802.15.1/2/3/4、802.16等标准草案中IEEE802.11s任务组,主要研究支持无线分布式系统(WDS)的协议,为WMN定义媒体接入控制(MAC)层和物理层协议,以实现WLAN在多个AP之间通过自配置多跳的方式组网,提高WLAN的覆盖范围。WDS是802.11网络的一部分,用来作中继桥接的功能,可以让无线AP之间通过无线进行桥接(中继),同时不影响其无线AP覆盖的功能。支持WDS技术的无线AP或无线路由器具有混合的无线局域网工作模式,可以支持点对点、点对多点的数据传输。IEEE802.11s提出了无线Mesh网络的参考体系结构,如图2所示。Mesh媒体接入协调功能组件(MMACFC)位于物理层之上、Mesh路由组件之下,负责有效的竞争接入和WMN中多跳节点间数据包发送接收的调度。当安全的Mesh链路建立以后,Mesh节点需要与其他Mesh节点协调以解决竞争和共享无线媒体的问题,来保证该节点本身及其他节点的数据包通过多跳的WMN有效转发。直观上看,MMACFC等同于802.11WLAN中的分布式协调功能(DCF)或802.11e中增强的分布式信道接入机制(EDCA)。对DCF或EDCA加以必要的改进,可高效地工作于多跳Mesh网络中。MMACFC需要解决的问题有:隐藏终端问题、暴露终端问题、在多跳Mesh路径上从源节点到目的节点的流量控制、在多跳转发路径上的有效调度、对多跳多媒体业务(视频或语音)分布式允许接入控制、分布式保证服务质量(QoS)的业务管理、本地业务和转发业务的有效处理、不同网络环境下的可升级性、Mesh节点间信道工作接入的调度、使用多信道提高Mesh网络的性能等。IEEE802.11s的目标是突破传统AP功能上的限制,使之具有Mesh路由器的功能,业务流转发给邻近的AP进行的多跳传输。这种方式决定了WMN具有较高的可靠性、较大的伸缩性和较低的投资成本等特点。这样,在新的WLAN架构中,WLAN的AP自动形成WLAN的WMN骨干网[4]。IEEE802.11Mesh网络可以是骨干网Mesh结构,也可以是客户端Mesh结构。客户端Mesh结构中,所有设备工作在WLAN的Adhoc网络模式下,WMN通过自动配置实现节点间的互联,摆脱了以往对AP的依赖。IEEE802.15标准簇主要针对无线个域网开发的,主要定义了WPAN的物理层和MAC层。目前,802.15.1—802.15.3本质上均不能直接支持网状网络结构,而只是点到多点方式下的微微网结构,但散射网已经有了WMN的雏形[5]。IEEE802.15.4标准的研究定位于低数据速率、长电池寿命要求的应用设备,为WPAN提供综合的网络解决方案。ZigBee协议是运行在IEEE802.15.4的MAC和物理层以上的高层协议,它的网络层明确定义了3种网络拓扑结构,星形、簇形和Mesh结构。在Mesh结构中,网络中的所有无线节点都相同,可以直接互相通信,每一次网络都会选择一条或者多条路由进行多跳传输,将所要传输的数据信息传给中心节点,如图3所示。Mesh网的每个节点都有多条路径到达中心节点,因此它的容故障能力较强,而且这种多跳系统以多跳代替了单跳的传输距离,减小了源节点所需要的发送功率。IEEE802.15.5目前还在开发中,定位于WMN的MAC层,不需要ZigBee或IP路由支持,它继承了802.15.1—802.15.4的一些基本思想,但完全支持Mesh结构。在802.15.5标准中,Mesh网络被定义为一个个域网(PAN),有两种组网方式:全网状拓扑和部分网状拓扑。在全网状拓扑结构中,每一个节点直接与其他任何一个节点相连;在部分网状拓扑结构中,只有部分节点与其他所有节点相连,而其他节点则只是与交换较多数据的节点相连。802.15.5标准主要涉及的问题包括:碰撞避免的信标调度策略、路由算法、分布式安全问题、能效操作模式、对于网状节点和网状PAN移动性的支持等。IEEE802.16标准定义了无线城域网空中接口规范,为无线城域网(WMAN)提供“最后一公里”接入,是一种点对多点技术。鉴于无线Mesh网技术的不断发展,IEEE802.16标准工作组将Mesh结构纳入最近推出的IEEE802.16d/e标准中。无线Mesh网络是对IEEE802.16标准中的点到多点(P2MP)网络结构的补充。网络中的每个节点都与周围邻居节点形成多条链路,并且可以选择其中的一条链路,用来传输来自本节点或其他节点的信息。这样,连接断开的可能性要远低于P2MP模式。同时,随着节点数的增加,IEEE802.16Mesh网络的健壮性加强,覆盖范围扩大。IEEE802.16Mesh网络支持两种不同的物理层,支持自适应调制和编码,因此链路速率随着信道条件的变化而变化。对基于无线Mesh结构的WMAN来说,用户站(SS)间可直接或间接通信,不必通过基站(BS)中转。由于每个SS可以作为一个中转站,信号是以逐跳方式传输的,增加了网络的覆盖范围,当增加用户时不必再增加BS,其拓扑结构可以动态改变。另外,Mesh系统可以利用地形和建筑物,使用低传输功率和相对短的链路来减少干扰。还可使用方向性天线来大大地减少干扰和传输功率。减少内部干扰可以增加频率的再使用,提供频谱利用率;减少外部干扰,可以减少保护频带。同时,SS之间距离的缩短减小了室外天线功率和体积,降低了SS通信设备的成本。Mesh拓扑结构在可靠性、覆盖面积、规划用户和前期的低投入方面都有很好的表现。另外,IEEE802.16Mesh的集中式调度是基于时分多址(TDMA)方式的,可提供全面有效的资源利用率。为了支持用户的可移动性,在IEEE802.16d的基础上制定了新的标准IEEE802.16e。802.16e支持本地和地区的移动性,支持漫游和切换,移动速度可达到150km/h[7]。目前,IEEE802.16工作组内新组建的MeshAdhoc特别委员会正在研究点到点数据传输的支持、信号障碍穿越等问题。WMN可使数据从一点绕过障碍物跳跃到另一点,只需少量网格即可带来单个基站覆盖范围的大幅度改进。如果这一小组的提案得以采纳,它们将成为特别任务组f着手IEEE802.16f标准的开发,将推动WiMAX获得更大的发展。IEEE802.20,即移动宽带无线接入(MBWA)工作组,主要研究为移动用户开发的标准。制定802.20标准的目的:一是兼取固定无线接人网络的高数据传输速率和蜂窝网络的高移动性之优势,解决固定无线接
本文标题:MESH网络
链接地址:https://www.777doc.com/doc-6242923 .html