您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 2019届高三一轮文科数学课件:3.7-正弦定理和余弦定理的应用(含答案)
2019高三一轮总复习数学(文)提高效率·创造未来·铸就辉煌必修部分第三章三角函数、解三角形第七节正弦定理和余弦定理的应用1234考情分析基础自主梳理考点疑难突破课时跟踪检测栏目导航考情分析1考点分布考纲要求考点频率命题趋势解三角形及其综合应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.5年46考解三角形是三角函数的知识在三角形中的应用,高考中可单独考查,也可以与三函数、不等式、向量等综合考查.基础自主梳理2「基础知识填一填」1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线时叫仰角,目标视线在水平视线时叫俯角.(如图(a)).上方下方2.方位角从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图(b)).3.方向角相对于某一正方向的角(如图(c)).(1)北偏东α:指从正北方向顺时针旋转α到达目标方向.(2)东北方向:指北偏东45°.(3)其他方向角类似.「应用提示研一研」1.辨明两个易误点(1)易混淆方位角与方向角概念:方位角是指正北方向与目标方向线(按顺时针)之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.(2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.2.坡度(又称坡比):坡面的垂直高度与水平长度之比.「基础小题练一练」1.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°解析:如图所示,∠ACB=90°,又AC=BC,所以∠CBA=45°,而β=30°,所以α=90°-45°-30°=15°.所以点A在点B的北偏西15°.故选B.答案:B2.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30m,并在点C测得塔面A的仰角为60°,则塔高AB等于()A.56mB.153mC.52mD.156m解析:在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得BCsin30°=30sin135°,解得BC=152(m).在Rt△ABC中,AB=BCtan∠ACB=152×3=156(m),故选D.答案:D3.如图所示,为了测量某湖泊两侧A,B间的距离,某同学首先选定了与A,B不共线的一点C,然后给出了四种测量方案(△ABC的角A,B,C所对的边分别记为a,b,c):①测量A,C,b;②测量a,b,C;③测量A,B,a;④测量a,b,B,则一定能确定A,B间距离的所有方案的序号为()A.①②③B.②③④C.①③④D.①②③④解析:已知三角形的两角及一边可以确定三角形,故①③正确;已知两边及夹角可以确定三角形,故②正确;已知两边与其中一边的对角,三角形的个数可能一个、两个或无解,故④错误.故选A.答案:A4.如图,一艘船上午9:30在A处测得灯塔S在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°的方向,且与它相距82nmile.此船的航速是________nmile/h.解析:设航速为vnmile/h,在△ABS中AB=12v,BS=82,∠BSA=45°,由正弦定理得82sin30°=12vsin45°,则v=32.答案:32考点疑难突破3测量高度问题[典例导引]某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30°,求塔高.【解】如图所示,某人在C处,AB为塔高,他沿CD前进,CD=40,此时∠DBF=45°,过点B作BE⊥CD于E,则∠AEB=30°.在△BCD中,CD=40,∠BCD=30°,∠DBC=135°.由正弦定理,得CDsin∠DBC=BDsin∠BCD.∴BD=40sin30°sin135°=202.∠BDE=180°-135°-30°=15°.在Rt△BED中,BE=DBsin15°=202×6-24=10(3-1).在Rt△ABE中,∠AEB=30°,∴AB=BEtan30°=103(3-3)(米).故所求的塔高为103(3-3)米.求解高度问题应注意的3个问题(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.[自主演练]1.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600m,故由正弦定理得600sin45°=BCsin30°,解得BC=3002(m).在Rt△BCD中,CD=BC·tan30°=3002×33=1006(m).答案:1006测量距离问题[考向锁定]研究测量距离问题,解决此问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.常见的命题角度有(1)两点都不可到达;(2)两点不相通的距离;(3)两点间可视但有一点不可到达.[多维视角]角度一两点都不可到达如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________km.【解析】∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32(km).在△BCD中,∠DBC=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin45°·sin30°=64.在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos45°=34+38-2×32×64×22=38.∴AB=64(km).∴A,B两点间的距离为64km.【答案】64角度二两点不相通的距离如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B,两点间的距离.即AB=a2+b2-2abcosα.若测得CA=400m,CB=600m,∠ACB=60°,则A,B两点的距离为________m.【解析】在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BCcos∠ACB,∴AB2=4002+6002-2×400×600cos60°=280000.∴AB=2007(m).即A,B两点间的距离为2007m.【答案】2007角度三两点间可视但有一点不可到达如图所示,A,B两点在一条河的两岸,测量者在A的同侧,且B点不可到达,要测出A,B的距离,其方法为在A所在的岸边选定一点C,可以测出A,C的距离m,再借助仪器,测出∠ACB=α,∠CAB=β,在△ABC中,运用正弦定理就可以求出AB.若测出AC=60m,∠BAC=75°,∠BCA=45°,则A,B两点间的距离为________m.【解析】∠ABC=180°-75°-45°=60°,所以由正弦定理得ABsinC=ACsinB,∴AB=AC·sinCsinB=60×sin45°sin60°=206(m).即A,B两点间的距离为206m.【答案】206求距离问题的2个注意事项(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.[自主演练]1.一艘船以每小时15km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为()A.152kmB.302kmC.452kmD.602km解析:如图所示,依题意有AB=15×4=60,∠DAC=60°,∠CBM=15°,∴∠MAB=30°,∠AMB=45°.在△AMB中,由正弦定理,得60sin45°=BMsin30°,解得BM=302,故选B.答案:B2.如图,隔河看两目标A与B,但不能到达,在岸边先选取相距3千米的C,D两点,同时,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.解:在△ACD中,∠ACD=120°,∠CAD=∠ADC=30°,所以AC=CD=3km.在△BCD中,∠BCD=45°,∠BDC=75°,∠CBD=60°.所以BC=3sin75°sin60°=6+22.在△ABC中,由余弦定理,得AB2=(3)2+6+222-2×3×6+22×cos75°=3+2+3-3=5,所以AB=5km,所以A,B之间的距离为5km.测量角度问题[典例导引]如图,在海岸A处,发现北偏东45°方向距A为(3-1)海里的B处有一艘走私船,在A处北偏西75°方向,距A为2海里的C处的缉私船奉命以103海里/时的速度追截走私船.此时走私船正以10海里/时的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间.(注:6≈2.449)【解】设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则有CD=103t(海里),BD=10t(海里).在△ABC中,因为AB=(3-1)海里,AC=2海里,∠BAC=45°+75°=120°,根据余弦定理,可得BC=3-12+22-2×2×3-1cos120°=6(海里).根据正弦定理,可得sin∠ABC=ACsin120°BC=2×326=22.所以∠ABC=45°,易知CB方向与正北方向垂直,从而∠CBD=90°+30°=120°.在△BCD中,根据正弦定理,可得sin∠BCD=BDsin∠CBDCD=10t·sin120°103t=12,所以∠BCD=30°,∠BDC=30°,所以BD=BC=6(海里),则有10t=6,t=610≈0.245小时=14.7分钟.故缉私船沿北偏东60°方向,需14.7分钟才能追上走私船.解决测量角度问题的3个注意事项(1)测量角度时,首先应明确方位角及方向角的含义.(2)求角的大小时,先在三角形中求出其正弦或余弦值.(3)在解应用题时,要根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点.[自主演练]如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cosθ的值.解:在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理得,BC2=AB2+AC2-2AB·AC·cos120°=2800,解得BC=207.由正弦定理,得ABsin∠ACB=BCsin∠BAC⇒sin∠ACB=ABBC·sin∠BAC=217.由∠BAC=120°,知∠ACB为锐角,则cos∠ACB=277.由θ=∠ACB+30°,得cosθ=cos(∠ACB+30°)=cos∠ACBcos30°-sin∠ACBsi
本文标题:2019届高三一轮文科数学课件:3.7-正弦定理和余弦定理的应用(含答案)
链接地址:https://www.777doc.com/doc-6284819 .html