您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 必修5 2.3.04 等差数列的前n项和的性质
等差数列前n项和的性质等差数列平均分组,各组之和仍为等差数列。232,,nmmmmmaSSSSS,如果为等差数列则也成等差数列。2mSmd,新的等差数列首项为公差为。等差数列前n项和的性质1:1、已知{an}是等差数列:(1)a1+a2+a3=5,a4+a5+a6=10,则a7+a8+a9=___a19+a20+a21=_____(2)Sn=25,S2n=100,则S3n=_____1535225课堂练习。是等差数列,公差为,,,解:由已知可得数列32421620484dSSSSS12932)15(41620SSS所以1620201817SSaaa因为。求若公差项和为的前等差数列220191817412aaaaSdSnann,,,、}{。的值为129201817aaa课堂练习项,则共有若等差数列12nan21(1)(21)nnSna(2)1SnSn奇偶奇数项个数偶数项个数(3)nSSa奇偶中间项等差数列前n项和的性质2:1352124622(3)(...)(...)nnSSaaaaaaaa奇偶nnnnnaannaaanaan)1(2))(1(2)(222121项,则共有若等差数列12nan12121(21)()(21)2(1)(21)22nnnnnaanaSna等差数列前n项和的性质2:1352124622(...)(2)(...)nnSaaaaSaaaa奇偶121222()2(1)()(1)12nnnnnaanannaanan)...()...(264212531nnaaaaaaaaSS偶奇1221212)(2)(nnnnaaaanaan项,则共有若等差数列nan2中间两项之比偶奇1)2(nnaaSSndSS奇偶)1(等差数列前n项和的性质2:)...()...(264212531nnaaaaaaaaSS偶奇1221212)(2)(nnnnaaaanaan项,则共有若等差数列nan2中间两项之比偶奇1)2(nnaaSSndSS奇偶)1(等差数列前n项和的性质2:)...()...(125312642nnaaaaaaaaSS奇偶ndaaaaaaaann)(...)()()(1225634122nnannAB数列是公差为d的等差数列,则SnSAnBnnSn是等差数列,公差为A.nnnaan2ndnSS已知是公差为d的等差数列,为数列的前项是等差数列,则公差为和,.等差数列前n项和的性质3:求公差项和为的前等差数列3,,、2dSnann}{)())(1(10864297531aaaaaaaaaa864297531)2(aaaaaaaaa105)1(d答案:45)2(4433已知项数为奇数的等差数列,奇数项的和为,偶数项的和为,求该数列的项数项解:设数列共有12n)...()...(2264212531nnaaaaaaaaSS偶奇1)1(2))(1(2)(222121nnannaaanaannnnn343344项该数列共有7dan,求公差:偶数项之比为项中奇数项与前项和为的前等差数列322712,35412}{)...()...(264212531nnaaaaaaaaSS偶奇1221212)(2)(nnnnaaaanaan354)(6)(62)(127612112112aaaaaaS3227761aaaaSSnn偶奇532,2776daa在项数为2n项的等差数列中,各奇数项的和为75,偶数项的和为90,末项与首项的差为27,求n)...()...(125312642nnaaaaaaaaSS奇偶ndaaaaaaaann)(...)()()(12256341227)12(12dnaan157590ndSS奇偶3,5dn解得:的值求且中,公差已知等差数列10032199531n...60...,21aaaaaaaaad两等差数列前n项和与通项的关系若数列{an}与{bn}都是等差数列,且前n项的和分别为Sn和Tn,则nnab2121nnST1212112121(21)()2(21)()2nnnnnaaSnbbT(21)(21)nnnnnaanbbnnnnananaanS)12(22)12(2))(12(1211288,3213,,,bannTSTSnbannnnnn求且项和分别为的前等差数列3431521153151515158888TSbaba22111112)(2)8()(4)0,1(84nnnnnnnnnnaaaaaNSSaaan+1nn+1a解数列是a:a等差数列。,,、正项数列例2)2(814nnnaSa}{是等差数列。求证}{na)1(项和的最小值。的前,求数列若nbabnnn}{3021)2(211112(2)28Saa1()由知a解:1154223102931,02215,15225nnnnnanbnbnnNbnbS15的前项为负,最小且S,,、正项数列例2)2(814nnnaSa}{是等差数列。求证}{na)1(项和的最小值。的前,求数列若nbabnnn}{3021)2(
本文标题:必修5 2.3.04 等差数列的前n项和的性质
链接地址:https://www.777doc.com/doc-6301020 .html