您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 北京化工大学仪器分析仪器分析总结 (2)
第七章紫外可见分光光度法(UV-VISspectrometry)二、紫外可见光谱可见吸收光谱:电子跃迁光谱吸收光波长范围400780nm,主要用于有色物质的定量分析。紫外吸收光谱:电子跃迁光谱吸收光波长范围200400nm(近紫外区),可用于结构鉴定和定量分析。特点灵敏度高选择性较好通用性强准确度较好操作简单价格低廉二、紫外可见吸收光谱同一种物质对不同波长光的吸光度不同。吸光度最大处对应的波长称为最大吸收波长λmax不同浓度的同一种物质,其吸收曲线形状相似λmax不变。而对于不同物质,它们的吸收曲线形状和λmax则不同。吸收光谱的波长分布是由产生谱带的跃迁能级间的能量差所决定,反映了分子内部能级分布状况,是物质定性分析的依据。吸收谱带的强度与该物质分子吸收的光子数成正比,是物质定量分析的依据。有机化合物的紫外—可见吸收光谱分子中外层价电子跃迁的结果(三种):形成单键的σ电子、形成双键的π电子、未成键的n电子分子轨道理论:一个成键轨道必定有一个相应的反键轨道。通常外层电子均处于分子轨道的基态,即成键轨道或非键轨道上。当外层电子吸收紫外或可见辐射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁,所需能量ΔΕ大小顺序为:n→π*π→π*n→σ*σ→σ**跃迁•能量很大•吸收光谱在真空紫外区•多为饱和烃甲烷125nm乙烷135nmn*跃迁•所需能量小于*跃迁(150-250nm)•若饱和烃中的氢原子被氧、氮、卤素等原子或基团所取代,由于这些原子中含有n电子,可以发生n*跃迁•摩尔吸光系数比较小,一般在100-3000L/molcm化合物maxmaxH2O1671480CH3OH184150CH3Cl173200(CH3)2O1842520*和n*跃迁•*和n*跃迁能量低(200nm)•含有不饱和键的有机分子易发生这类跃迁C=C;C=C;N=N;C=O•有机化合物的紫外-可见吸收光谱分析多以这两类跃迁为基础•*比n*跃迁几率大100-1000倍•*跃迁吸收强,~104•n*跃迁吸收弱,500红移—λmax向长波方向移动蓝移—向短波方向移动增色效应—吸收强度即摩尔吸光系数,ε增大的现象减色效应—吸收强度即摩尔吸光系数,ε减小的现象引入取代基或改变溶剂紫外光谱中常用的术语生色团——含有键不饱和官能团助色团——基团本身无色,但能增强生色团颜色为含有n电子,且能与电子作用,产生n共轭(向长波方向移动)184204254270苯(*)苯酚(—OH为助色团)/nm紫外光谱中常用的术语有机化合物紫外-可见吸收光谱1.饱和烃及其取代衍生物饱和烃类分子中只含有键,只能产生*跃迁。饱和烃的最大吸收峰一般小于150nm,超出紫外、可见分光光度计的测量范围。饱和烃的取代衍生物如卤代烃,其卤素原子上存在n电子,可产生n*的跃迁。n*的能量低于*。例如,CH3Cl、CH3Br和CH3I的n*跃迁分别出现在173、204和258nm处。氯、溴和碘原子引入甲烷后,其相应的吸收波长发生了红移,显示了助色团的助色作用。直接用烷烃和卤代烃的紫外吸收光谱分析这些化合物的实用价值不大。但是它们是测定紫外和(或)可见吸收光谱的良好溶剂。2.不饱和烃及共轭烯烃在不饱和烃类分子中,除含有键外,还含有键,它们可以产生*和*两种跃迁。*跃迁的能量小于*跃迁。例如,在乙烯分子中,*跃迁最大吸收波长为180nm在不饱和烃类分子中,当有两个以上的双键共轭时,随着共轭系统的延长,*跃迁的吸收带将明显向长波方向移动,吸收强度也随之增强。在共轭体系中,*跃迁产生的吸收带又称为K带。有机化合物紫外-可见吸收光谱3.羰基化合物羰基化合物含有C=O基团。C=O基团主要可产生*、n*、n*三个吸收带,n*吸收带又称R带,落于近紫外或紫外光区。醛、酮、羧酸及羧酸的衍生物,如酯、酰胺等。羧酸及羧酸的衍生物虽然也有n*吸收带,但是,羧酸及羧酸的衍生物的羰基上的碳原子直接连结含有未共用电子对的助色团,如-OH、-Cl、-OR等,由于助色团上的n电子与羰基双键的电子产生n共轭,导致*轨道的能级有所提高,使n*跃迁所需的能量变大,n*吸收带蓝移至210nm左右。有机化合物紫外-可见吸收光谱4.苯及其衍生物苯有三个吸收带,它们都是由*跃迁引起的。E1带出现在180nm(MAX=60,000);E2带出现在204nm(MAX=8000);B带出现在255nm(MAX=200)。在气态或非极性溶剂中,苯及其许多同系物的B谱带有许多的精细结构,这是由于振动跃迁在基态电子上的跃迁上的叠加而引起的。在极性溶剂中,这些精细结构消失,当苯环上有取代基时,苯的三个特征谱带都会发生显著的变化,其中影响较大的是E2带和B谱带。有机化合物紫外-可见吸收光谱溶剂对紫外吸收光谱的影响1.溶剂的极性溶剂的极性越强,由π→π*跃迁产生的谱带向长波方向移动越显著。这是因为发生π→π*跃迁的分子激发态的极性总大于基态,在极性溶剂的作用下,激发态能量降低的程度大于基态,从而使基态到激发态跃迁所需的能量变小,使吸收带发生红移。所用溶剂极性越强,则由n→π*跃迁产生的谱带向短波方向移动越明显,即蓝移越大。发生n→π*跃迁的分子都含有未成键的孤对电子,与极性溶剂形成氢键,使得分子的非键轨道能量有较大程度的降低,使n→π*跃迁所需的能量相应增大,致使吸收谱带发生蓝移。比耳(Beer)—1852年朗伯—比尔定律光的吸收程度和吸收物浓度之间的关系A∝cA:吸光度---溶液对光的吸收程度b:液层厚度(光程长度,cm)c:溶液的摩尔浓度,mol·L-1ε:摩尔吸光系数,L·mol-1·cm-1;光的吸收定律A=lg(I0/It)=εbc浓度为1mol/L、液层厚度为1cm时该溶液在某一波长下的吸光度A=lg(I0/It)=abcc:溶液的浓度,g·L-1a:吸光系数,L·g-1·cm-1浓度为1g/L、液层厚度为1cm时该溶液在某一波长下的吸光度a——εa=ε/M(M为摩尔质量)摩尔吸光系数三、光的吸收定律不随浓度c和光程长度b的改变而改变,在温度和波长等条件一定时,ε仅与吸收物质本身的性质有关同一吸收物质在不同波长下的ε值是不同的。在最大吸收波长λmax处的摩尔吸光系数,常以εmax表示。代表可能达到的最大灵敏度。εmax越大表明光度法测定该物质灵敏度越高ε105:超高灵敏;ε=(6~10)×104:高灵敏ε2×104:不灵敏。偏离朗伯—比耳定律的原因当溶液浓度较高时,标准曲线常发生弯曲,称为偏离朗伯—比耳定律。原因物理性因素化学性因素物理性因素难以获得真正的纯单色光——仪器的原因选择比较好的单色器将入射波长选定在待测物质的最大吸收波长且吸收曲线较平坦处解决办法前提条件之一:入射光为单色光化学性因素当溶液浓度c10-2mol/L时,吸光质点间可能发生缔合等相互作用,直接影响了对光的吸收。溶液中存在着离解、聚合、互变异构、配合物的形成等化学平衡时。使吸光质点的浓度发生变化,影响吸光度光度计的基本结构光源单色器狭缝样品室两种玻璃不能用于紫外区检测器在整个紫外光区或可见光谱区可以发射连续光谱具有足够的辐射强度较好的稳定性较长的使用寿命可见光区:钨灯作为光源,其辐射波长范围在320~2500nm。紫外区:氢、氘灯,发射185~400nm的连续光谱。光源单光束仪器的缺点:•操作麻烦:空白——IO样品——I任一波长•不能进行吸收光谱的自动扫描•光源不稳定性影响测量精密度双光束仪器的特点和不足:•测量方便,不需要更换吸收池•补偿了仪器不稳定性的影响•实现了快速自动吸收光谱扫描•不能消除试液的背景成分吸收干扰双波长仪器能否消除背景干扰?A1=lgI0/I1=1bC+AbA2=lgI0/I2=2bC+Ab式中Ab为背景吸收或干扰物质的吸收若波长选择合适,1和2处Ab相同则A=lgI1/I2=(1-2)bC因此测量两波长吸光度之差,就消除了背景吸收的干扰。/nmA0200300400123多组分混合物中各组分分别测定——多波长分光光度法A1=11C1+12C2+13C3A2=21C1+22C2+23C3A3=31C1+32C2+33C3ij为在波长i测定组分j的摩尔吸光系数Ai为在波长i测得该体系的总吸光度(加合性)解上联立方程可求出待测物浓度C1、C2、C3b:液层厚度为1cm显色反应及显色条件的选择显色反应将待测组分转变成有色化合物的反应显色剂与待测组分形成有色化合物的试剂显色反应类型络合反应氧化还原反应取代反应缩合反应选择要素灵敏度高(大)选择性好有色生成物稳定组成恒定(不同络合比颜色不同)显色剂在测定波长处无明显吸收有色化合物与显色剂颜色对比度大,要求△60nm。吸光度测量条件的选择1.选择适当的入射光波长一般应该选择λmax为入射光波长。但如果λmax处有共存组分干扰时,则应考虑选择灵敏度稍低但能避免干扰的入射光波长。2.控制适宜的吸光度(读数范围)Tmin=36.8%,Amin=0.434(吸光度测量误差最小)最佳读数范围T%=70%~10%A=0.15~1.03.选择合适的参比溶液若仅待测组分与显色剂反应产物有吸收,其它试剂均无吸收,用纯溶剂(水)作参比溶液;若显色剂或其它试剂略有吸收,试液本身无吸收,用“试剂空白”(不加试样溶液)作参比溶液;若待测试液有吸收,而显色剂等无吸收,则可用“试样空白”(不加显色剂)作参比溶液。书本知识点红外吸收光谱法InfraredSpectrometry,IR基本概念1.红外光谱:分子吸收一定能量后,引起分子的振动-转动能级发生跃迁,这种跃迁总是发生在红外光区,因此称作红外光谱。2.波长&波数:波长就是红外光区的波长范围,即0.78mm~1000mm(780nm~1000000nm);波数即波长的倒数。)m()cm(1000013.透过率(T%)&吸光度(A)1000II%T…………………….(1)TlgTlgIIlgA10..……………….(2)I0:红外光入射强度;I:红外光的透过强度。4.分子的吸收光谱。分子的电子能级跃迁--UV-Vis分子的振动-转动跃迁--IR定性:红外光谱最重要的应用是中红外区有机化合物的结构鉴定。通过与标准谱图比较,可以确定化合物的结构;对于未知样品,通过官能团、顺反异构、取代基位置、氢键结合以及络合物的形成等结构信息可以推测结构。定量:近年来红外光谱的定量分析应用也有不少报道,尤其是近红外、远红外区的研究报告在增加。如近红外区用于含有与C,N,O等原子相连基团化合物的定量;远红外区用于无机化合物研究等。红外光谱还可作为色谱检测器。峰位吸收峰的位置(振动能级差)峰数吸收峰的数目(分子振动自由度数目)峰强吸收峰的强度(偶极矩变化)2.辐射与物质间有相互耦合作用(偶极矩变化才能产生红外吸收光谱,哪些典型物质没有红外?)。满足两个条件:1.辐射应具有能满足物质产生振动跃迁所需的能量双原子分子的简谐振动及其频率化学键的振动类似于连接两个小球的弹簧K-力常数,定义为将两原子由平衡位置伸长单位长度时的恢复力-折合质量V-吸收峰的频率kcmkckhhEhEm13072121振动的量子化发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数,即取决于分子的结构特征。多原子分子的振动简正振动——分子质心保持不变,整体不转动,每个原子都在其平衡位置作简谐振动,其振动频率和相位相同,振幅不同。基本振动形式伸缩振动——键长变化键角不变变形振动——键角变化键长不变伸缩振动亚甲基变形振动多原子分子振动总结对同一基团,不对称伸缩振动频率稍高于对称伸缩振动变形振动的力常数比伸缩振动小,因此同一基团的变形振动比伸缩振动小基频吸收峰数小于振动自由度对称振动,偶极
本文标题:北京化工大学仪器分析仪器分析总结 (2)
链接地址:https://www.777doc.com/doc-6315272 .html