您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 厦门市2017-2018高一下学期质量检测数学试题(终稿)
高一数学试题第1页(共4页)厦门市2017~2018学年度第二学期高一年级质量检测数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为第四象限角,22sin3,则cos等于A.13B.19C.19D.132.已知直线a,b,c,平面,则下列结论错误..的是A.若//ab,//bc,则//acB.若ab,bc,则//acC.若a,b,则//abD.若//ab,a,则b3.已知扇形的圆心角为56,半径为4,则该扇形的面积为A.53B.103C.203D.4034.已知=(3,1)ax,(,2)bx,若a与b的方向相反,则实数x的值为A.2-B.3C.2-或3D.2或35.已知点(3,2)A和(1,4)B到直线30mxy的距离相等,则实数m的值为A.0或21B.6或21C.6或21D.0或216.已知点(1,2)A,(3,1)B-,则AB在y轴正方向上的投影为A.3B.2C.2-D.3-7.如图,弹簧挂着的小球作上下运动,它在t秒时相对于平衡位置的高度h厘米由关系式2sin()3ht确定.下列结论正确的是A.小球的最高点和最低点相距2厘米B.小球在0t时的高度1hC.每秒钟小球往复运动的次数为2D.从1t到3t,弹簧长度逐渐变长8.榫卯是我国古代工匠极为精巧的发明,是中国古建筑、家具及其它器械的主要结构方式,其特点是在物件上不使用钉子,利用榫卯加固物件.图1所示的榫卯结构由两部分组成,其中一部分结构的三视图如图2所示,网格纸上小正方形的边长为1,则该部分的表面积为高一数学试题第2页(共4页)A.185164B.185194C.105162D.1051929.若圆224260xyxym与y轴的交点,AB位于原点同侧,则实数m的取值范围是A.1mB.5mC.65mD.61m10.如图,正三棱柱111CBAABC的底面边长为3,侧棱长为1,M为AB的中点,则直线1AM与1BC所成角的正弦值是A.74B.34C.32D.7311.如图,在ABC△中,2ABC,AD平分BAC,过点B作AD的垂线,分别交AD,AC于E,F.若6AF,8BC,则=AEA.13210ABACB.1123ABACC.23510ABACD.2153ABAC12.已知()sin()(0,0)fxAxA的图象与直线(0)ymm的三个相邻交点的横坐标分别是21014,,333.当[,]xmA时,)(xf的值域为22[,]33,则A的值是A.23B.43C.2D.4二、填空题:本大题共4小题,每小题5分,共20分.13.过圆22(4)(2)25xy上的点)21(,M作切线l,则l的方程是________.14.已知sin()2cos,则2sin2cos________.15.已知a,b,c均是单位向量,若3abc,则a与b的夹角为________.16.正方体1111DCBAABCD的棱长为1,过1AC的平面截此正方体所得四边形周长的最小值是________.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知ABC△中,点(4,3)A,(2,1)B,点C在直线l:220xy上.(1)若C为l与x轴的交点,求ABC△的面积;(2)若ABC△是以AB为底边的等腰三角形,求点C的坐标.高一数学试题第3页(共4页)18.(12分)如图,直四棱柱1111DCBAABCD中,底面ABCD是菱形,60BAD,E是1CC的中点,122AAAB.(1)证明:1AEBD;(2)求直线EA1与平面ABCD所成角的大小.19.(12分)如图,角,的顶点为坐标原点,始边与x轴的非负半轴重合,锐角的终边与单位圆交于点A.(1)若点A的坐标为43(,)55,OA绕原点逆时针旋转4,与角的终边重合,求sin;(2)已知点(0,3)C,(1,0)D,角终边的反向延长线与单位圆交于点B,求当角取何值时,四边形ABCD的面积最大?并求出这个最大面积.20.(12分)一木块如图所示,点G是SAC△的重心,过点G将木块锯开,使截面平行于侧面SBC.(1)在木块上画出符合要求的线,并说明理由;(2)若底面ABC为等边三角形,232SASBSCAB,求截面与平面SBC之间的几何体的体积.高一数学试题第4页(共4页)21.(12分)已知函数()sin()(0,)2fxx的周期为,其图象关于直线4x对称.(1)求()fx的解析式,并画出其在区间0,上的图象;(2)将()fx图象上的点的横坐标缩短至原来的12倍(纵坐标不变),再把所得图象上所有的点向左平移8个单位得到()gx的图象.当0,10x时,求函数()()(21)()1Fxgxafxa(01)a的零点个数.22.(12分)如图,圆C与x轴交于点(1,0)A,(1,0)B,其在x轴下方的部分和半圆221xy(0)y组成曲线.过点A的直线l与的其它两个交点为E,F,且点E在x轴上方.当E在y轴上时,2FAAE.(1)求C的方程;(2)延长EB交于点G.求证:CFG△的面积为定值.高一数学试题第5页(共4页)厦门市2017~2018学年度第二学期高一年级质量检测数学参考答案一、选择题1~5ABCAB;6~10DDCCB;11~12AB第12题参考解答:21014()()()0333fffm,142433T,22T,又10214103333,当1023322x时,fx取最小值,则32222k,2,2kk,sin()cos222fxAxAx2()32Amf.依题意23A,若23A,222ATAm,与23A矛盾,舍去;若23A,则fx在,mA上单调,2TAm,即4A.22033fmfA,()02mAf,则222mAk,4833Ak,kZ,43A.二、填空题13.3450xy14.115.6016.25三、解答题17.本题考查直线平行与垂直的性质、点到直线的距离、两点距离公式以及三角形面积等基础知识,考查运算求解能力,考查方程思想与数形结合的数学思想.本题满分10分.解:(1)法一:点C在直线l上,当0y时,2x,(2,0)C··································································1分2ABk,直线AB的方程为250xy,·····································2分C到直线AB的距离95d············································································3分25AB,·····························································································4分11925=9225ABCSABd···························································5分法二:点C在直线l上,当0y时,2x,(2,0)C··································································1分2ABk,直线AB的方程为250xy,········································2分令0y,则52x,······················································································3分高一数学试题第6页(共4页)15(2)(13)922ABCS······································································5分(2)AB中点的坐标为(3,1),2ABk······························································6分AB的中垂线方程为11(3)2yx,即250xy····································7分联立250220xyxy,····················································································8分得3274xy,点37(,)24C··············································································10分18.本题考查线面的位置关系、线面角等基础知识,考查逻辑推理、运算求解等能力,考查化归转化的数学思想.本题满分12分.解:(1)证明:连结AC,四边形ABCD是菱形ACBD·····························································1分1AA平面ABCD1AABD·····························································2分又1AAACA························································································3分BD平面1ACEA······················································································5分1AEBD·································································································6分(2)法一:取1AA中点F,连结CF,则1//AECF············································7分CF与平面ABCD所成角等于1AE与平面ABCD所成角又1AA平面ABCDFCA为CF与平面ABCD所成角··························9分又60BAD,1AB3AC····························································10分13tan33AFFCAAC·········································································11分30FCA即1AE与平面ABCD所成角为30····
本文标题:厦门市2017-2018高一下学期质量检测数学试题(终稿)
链接地址:https://www.777doc.com/doc-6316084 .html