您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 风力发电机组及其控制系统
题目风力发电机组及其控制系统学院机械交通学院专业电气工程及其自动化班级092班姓名冉雷学号093736223指导教师徐立军职称教授2012年11月26日新疆农业大学教务处制风力发电机组及其控制系统冉雷(新疆农业大学,乌鲁木齐,830052)摘要:风力发电厂运行情况多种多样,动态特性复杂,在电气设备,保护控制系统的选型和设计上有一定的特殊性。因此,在设计过程中尽可能多地熟悉和掌握各类风力发电电气设备的技术特性。本文介绍了风力发电机组及其控制系统主要设备的工作原理和技术特点,并且对风力发电控制设备的关键技术研究进行了探讨。关键词:风力发电控制变流器现场控制BriefAnalysisofWindPowerGeneratorsandtheirControlConfigurationRanLei(XinJiangAgriculturalUniversity,Urumqi830052)Abstract:Windpowergeneratorswhichhavecomplexdynamiccharacteristic,areoperatedinmultiplicativeconditions.DesignofelectricalshouldmeetspecialrequirementsofWindpowergenerators’operation.Accordingtothispaper,theprincipleandcharacteristicsofwindpowergeneratorsandtheircontrolequipmentsareintroduced.Keytechnologiesresearchofwindpowercontrolequipmentisstudied.Keywords:windpowergeneratorcontrolconverterlocalcontrol0引言21世纪是可再生能源的世纪,在不断持续的能源紧张中不少人想到了新能源利用。文明进步的表现、是科学技术的发展、是环保理念的体现。洁净能源指太阳能、风能、潮汐能、生物能等这都是可再生取之不尽的能源,特别是风能技术最为成熟,经济可行性较高是一种较理想的发展能源。风是地球上的一种自然现象,它是由太阳辐射热引起的。风能是太阳能的一种转换形式是一种重要的自然能源。不同产生温差从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观。全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。风能非常丰富、价格非常便宜、能源不会枯竭,又可以在很大范围内取得,非常干净、没有污染,不会对气候造成影响,因而风力发电具有极大的推广价值。我国风能资源总量约42亿千瓦,技术可开发量约3亿千瓦。风能资源丰富的地区主要集中在北部、西北和东北的草原、戈壁滩以及东部、东南部的沿海地带和岛屿上。这些地区缺少煤炭及其他常规能源,并且冬春季节风速高雨水少,夏季风速小,降雨多,风能和水能具有非常好的季节补偿。目前东南沿海是最大风能资源区,风能密度为200W/M2--300W/M2,大于6m/s的风速时间全年3000h以上就可取得较大经济效益。另外,新疆风能资源丰富,开发利用起步较早,新疆达坂城风电一场于1989年建成,这是中国第一座风力发电场。经过近20年的发展,截至2007年底,新疆已在9大风区中的5个风区“排兵布阵”,新疆作为中国风能资源大区迎来风电开发的热潮。截至2007年底,新疆风电装机规模达到27.9万千瓦,占新疆电力装机总量的3.4%。仅2007年一年,新疆经许可建设的风电场项目装机规模就达29万千瓦。2008年下半年以来,受国际国内宏观经济形势影响,新疆供电负荷增长趋缓,传统电力行业面临亏损,但风力发电发展势头依然迅猛。随着大批风电项目陆续开工建设,新疆风力发电装机规模持续扩张。2008年12月,年发电量约1.2亿千瓦时玛依塔斯风电一期项目竣工暨二期项目启动仪式在新疆额敏县举行。2009年1月,投资4亿元,装机4.95万千瓦的阿勒泰金风布尔津风电场开始并网发电。新疆风力发电迎来历史性发展机遇。1风力发电机控制系统1.1风力发电机的组成风力发电机由多个部分组成,而控制系统贯穿到每个部分,相当于风电系统的神经。因此控制系统的好坏直接关系到风力发电机的工作状态、发电量的多少以及设备的安全。目前风力发电亟待研究解决的的两个问题:发电效率和发电质量都和风电控制系统密切相关。对此国内外学者进行了大量的研究,取得了一定进展,随着现代控制技术和电力电子技术的发展,为风电控制系统的研究提供了技术基础。1.2控制系统的组成风力发电控制系统的基本目标分为三个层次:保证风力发电机组安全可靠运行;获取最大能量;提供良好的电力质量。控制系统组成主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最大功率点跟踪控制、功率因数控制、偏航控制、自动解缆、并网和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。当然对于不同类型的风力发电机控制单元会不相同。控制系统结构示意图如下:针对上述结构,目前绝大多数风力发电机组的控制系统都采用集散型或称分布式控制系统(DCS)工业控制计算机。采用分布式控制最大优点是许多控制功能模块可以直接布置在控制对象的位置。就地进行采集、控制、处理。避免了各类传感器、信号线与主控制器之间的连接。同时DCS现场适应性强,便于控制程序现场调试及在机组运行时可随时修改控制参数。并与其他功能模块保持通信,发出各种控制指令。目前计算机技术突飞猛进,更多新的技术被应用到了DCS之中。PLC是一种针对顺序逻辑控制发展起来的电子设备,目前功能上有较大提高。很多厂家也开始采用PLC构成控制系统。现场总线技术(FCS)在进入九十年代中期以后发展也十分迅猛,以至于有些人已做出预测:基于现场总线的FCS将取代DCS成为控制系统的主角。2控制系统技术2.1风力发电技术风力发电系统中的控制技术和伺服传动技术是其中的关键技术,这是因为自然风速的大小和方向是随机变化的,风力发电机组的并网和退出电网、输入功率的限制、风轮的主动对风以及对运行过程中故障的检测和保护必须能够自动控制。同时,风力资源丰富的地区通常都是边远地区或是海上,分散布置的风力发电机组通常要求能够无人值班运行和远程监控,这就对风力发电机组的控制系统的自动化程度和可靠性提出了很高的要求。与一般工业控制过程不同,风力发电机组的控制系统是综合性控制系统。它不仅要监视电网、风况和机组运行参数,对机组运行进行控制。而且还要根据风速与风向的变化,对机组进行优化控制,以提高机组的运行效率和发电量。经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。风力涡轮机特性:2.1.1风能利用系数Cp风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示:P---风力涡轮实际获得的轴功率r---空气密度S---风轮的扫风面积V---上游风速根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。2.1.2叶尖速比l为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。n---风轮的转速w---风轮叫角频率R---风轮半径V---上游风速在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。2.1.3变速发电的控制变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。2.2三段控制要求:低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。2.3双馈发电机双馈电机的结构类似于绕线式感应电机,定子绕组也由具有固定频率的对称三根电源激励,所不同的是转子绕组具有可调节频率的三相电源激励,一般采用交一交变频器或交一直一交变频器供以低频电流。双馈电机励磁可调量有三个:一是可以调节励磁电流的幅值;二是可以改变励磁电流的频率;三是可以改变励磁电流的相位.通过改变励磁频率,可调节转速.这样在负荷突然变化时,迅速改变电机的转速,充分利用转子的动能,释放和吸收负荷,对电网的扰动远比常规电机小。另外,通过调节转子励磁电流的幅值和相位,来调节有功功率和无功功率。双馈电机控制系统通过变频器控制器对逆变电路小功率器件的控制,可以改变双馈发电机转子励磁电流的幅值。频率及相位角,达到调节其转速、有功功率和无功功率的目的。既提高了机组的效率,又对电网起到稳频、稳压的作用,下图是双馈电机控制简要框图。整个控制系统可分为:转速调整单元、有功功率调整单元和电压调整单元(无功功率调整)。它们分别接受风速和转速。有功功率、无功功率指令,并产生一个综合信号,送给励磁控制装置,改变励磁电流的幅值。频率与相位角,以满足系统的要求。由于双馈电机既可调节有功功率;又可调节无功功率,有风时,机组并网发电;无风时,也可作抑制电网频率和电压波动的补偿装置。双馈电机应用于风力发电中,可以解决风力机转速不可调。机组效率低等问题。同时,由于双馈电机对无功功率。有功功率均可调,对电网可起到稳压。稳频的作用,提高了发电质量。与同步机交一直一交系统相比,它还具有变频装置容量小(一般为发电机额定容量的10%~20%左右)、重量轻的优点。但这种结构也还存在一些问题,如控制电路复杂一些,不同的控制方法效果有一定差异。另外该结构比其他结构更容易受到电网故障的影响。2.4永磁直驱同步发电机永磁直驱同步发电机系统结构如图:由变浆距风轮机直接驱动永磁同步发电机,省去了增速用齿轮箱。发电机输出先经整流器变为直流,再经IGBT(绝缘栅双极晶体管)逆变器将电能送到电网。对风力发电机工作点的控制是通过控制逆变器送到电网的电流实现对直流环节电压的控制,从而控制风轮机的转速。发电机发出电能的频率、电压、电功率都是随着风速的变化而变化的,这样有利于最大限度地利用风能资源,而恒频恒压并网的任务则由整流逆变系统系统完成。永磁直驱同
本文标题:风力发电机组及其控制系统
链接地址:https://www.777doc.com/doc-6342544 .html