您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 自考04183概率论与数理统计(经管类) 自考核心考点笔记 自考重点资料
《概率论与数理统计(经管类)》柳金甫、王义东主编,武汉大学出版社新版第一章随机事件与概率第二章随机变量及其概率分布第三章多维随机变量及其概率分布第四章随机变量的数字特征第五章大数定律及中心极限定理第六章统计量及其抽样分布第七章参数估计第八章假设检验第九章回归分析前言本课程包括两大部分:第一部分为概率论部分:第一章至第五章,第五章为承前启后章,第二部分为数理统计部分:第六章至第九章。第一章随机事件与概率本章概述.内容简介本章是概率论的基础部分,所有内容围绕随机事件和概率展开,重点内容包括:随机事件的概念、关系及运算,概率的性质,条件概率与乘法公式,事件的独立性。本章内容§1.1随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。结论:随机现象是不确定现象之一。2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。E2:掷一枚骰子,观察出现的点数。E3:记录110报警台一天接到的报警次数。E4:在一批灯泡中任意抽取一个,测试它的寿命。E5:记录某物理量(长度、直径等)的测量误差。E6:在区间[0,1]上任取一点,记录它的坐标。随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。所有样本点的集合称为样本空间,记作。举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。只包含一个样本点的单点子集{}称为基本事件。必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。……(中间部分略)完整版21.5页请——QQ:1273114568索取注:与集合包含的区别。相等:若且,则称事件A与事件B相等,记作A=B。(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。解释:包括三种情况①A发生,但B不发生,②A不发生,但B发生,③A与B都发生。性质:①,;②若;则。推广:可推广到有限个和无限可列个,分别记作和举例:A:“掷骰子出现的点数小于3”与B:“掷骰子点数大于4”则A∪B{1,2,5,6}(3)积事件概念:称“事件A与事件B同时发生”为事件A与事件B的积事件,或称为事件A与B的交,记作A∩B或AB。解释:A∩B只表示一种情况,即A与B同时发生。性质:①,;②若,则AB=A。推广:可推广到有限个和无限可列个,分别记作和。举例:A:“掷骰子出现的点数小于5”与B:“掷骰子点数大于2”则AB={3,4}(4)差事件概念:称“事件A发生而事件B不发生”为事件A与事件B的差事件,记作A-B.性质:①A-;②若,则A-B=。举例:A:“掷骰子出现的点数小于5”与B:“掷骰子点数大于2”则A-B={1,2}(5)互不相容事件概念:若事件A与事件B不能同时发生,即AB=,则称事件A与事件B互不相容。推广:n个事件A1,A2,…,An两两互不相容,即AiAj=,i≠j,i,j=1,2,…n。举例:A:“掷骰子出现的点数小于3”与B:“掷骰子点数大于5”则A与B互不相容。(6)对立事件:概念:称事件“A不发生”为事件A的对立事件,记做.解释:事件A与B互为对立事件,满足:①AB=ф;②A∪B=Ω举例:A:“掷骰子出现的点数小于3”与B:“掷骰子点数大于2”则A与B相互对立性质:①;②,;③A-B==A-AB;注意:教材第5页的第三条性质有误。④A与B相互对立A与B互不相容.小结:关系:包含,相等,互不相容,互为对立;运算:和,积,差,对立.(7)事件的运算性质①(和、积)交换律A∪B=B∪A,A∩B=B∩A;②(和、积)结合律(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C);③(和、积)分配律A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)④对偶律;.例1习题1.1,5(1)(2)设A,B为两个随机事件,试利用事件的关系与运算证明:证明:证明:例2.习题1.1,6请用语言描述下列事件的对立事件:(1)A表示“抛两枚硬币,都出现正面”;答案::“抛两枚硬币,至少有一枚出现反面”。(2)B表示“生产4个零件,至少有1个合格”。答案::“生产4个零件,没有1个是合格的”。§1.2概率1.频率与概率(1)频数与频率:在相同条件下进行n次试验,事件A发生nA次,则称nA为事件A发生的频数;而比值nA/n称为事件A发生的频率,记作fn(A).(2)fn(A)的试验特性:随n的增大,fn(A)稳定地趋于一个数值,称这个数值为概率,记作P(A).(3)由频率的性质推出概率的性质①推出①②,推出②P(ф)=0,P(Ω)=1③A,B互不相容,推出③P(A∪B)=P(A)=P(B),可推广到有限多个和无限可列多个.2.古典概型概念:具有下面两个特点的随机试验的概率模型,称为古典概型:①基本事件的总数是有限个,或样本空间含有有限个样本点;②每个基本事件发生的可能性相同。计算公式:例3.P9例1-8。抛一枚均匀硬币3次,设事件A为“恰有1次出现正面”,B表示“3次均出现正面”,C表示“至少一次出现正面”,试求P(A),P(B),P(C)。解法1设出现正面用H表示,出现反面用T表示,则样本空间Ω={HHH,THH,HTH,HHT,TTH,THT,HTT,TTT},样本点总数n=8,又因为A={TTH,THT,HTT},B={HHH},C={HHH,THH,HTH,HHT,TTH,THT,HTT},所以A,B,C中样本点数分别为rA=3,rB=1,rc=7,则解法2抛一枚硬币3次,基本事件总数n=23,事件A包含了3个基本事件:“第i次是正面,其他两次都是反面”,i=1,2,3,而且rA=3。显然B就是一个基本事件,它包含的基本事件数rB=1它包含的基本事件数rC=n-rB=23-1=7,故例4.P10例1-12。一批产品共有100件,其中3件次品。现从这批产品中接连抽取两次,每次抽取一件,考虑两种情况:(1)不放回抽样,第一次取一件不放回,第二次再抽取一件;(2)放回抽样,第一次取一件检查后放回,第二次再抽取一件。……(中间部分略)完整版21.5页请——QQ:1273114568索取试分别针对上述两种情况,求事件A“第一次抽到正品,第二次抽到次品”的概率。解:(1)(2)3.概率的定义与性质(1)定义:设Ω是随机试验E的样本空间,对于E的每一个事件A赋予一个实数,记为P(A),称P(A)为事件A的概率,如果它满足下列条件:①P(A)≥0;②P(Ω)=1;③设,,…,,…是一列互不相容的事件,则有.(2)性质①,;②对于任意事件A,B有;③;④.例5.习题1.211设P(A)=0.7,P(B)=0.6,P(A-B)=0.3,求解:(1)P(A-B)=P(A)-P(AB)∴P(AB)=P(A)-P(A-B)=0.7-0.3=0.4例6.习题1.213设A,B,C为三个随机事件,且P(A)=P(B)=P(C)=,P(AB)=P(BC)=,P(AC)=0。求:(1)A,B,C中至少有一个发生的概率;(2)A,B,C全不发生的概率。解:(1)“A,B,C至少有一个发生”表示为A∪B∪C,则所求概率为P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)§1.3条件概率1.条件概率与乘法公式条件概率定义:设A,B为两个事件,在已知事件B发生的条件下,事件A发生的概率,称为事件B发生条件下事件A发生的条件概率,记做P(A|B).例7P13例1-17.某工厂有职工400名,其中男女职工各占一半,男女职工中技术优秀的分别为20人与40人,从中任选一名职工,试问:(1)该职工技术优秀的概率是多少?(2)已知选出的是男职工,他技术优秀的概率是多少?解:设A表示“选出的职工技术优秀”,B表示“选出的职工为男职工”。按古典概型的计算方法得:(1)(2)计算公式:设AB为两个事件,且P(B)0,则。乘法公式:当P(A)0时,有P(AB)=P(A)P(B|A);当P(B)0时,有P(AB)=P(B)P(A|B).推广:①设P(AB)0,则P(ABC)=P(A)P(B|A)P(C|AB)②设,则例8P15例1-22.盒中有5个白球2个黑球,连续不放回地在其中取3次球,求第三次才取到黑球的概率。解:设Ai(i=1,2,3)表示“第i次取到黑球”,于是所求概率为2.全概率公式与贝叶斯公式(1)划分:设事件,,…,满足如下两个条件:①,,…,互不相容,且,i=1,2,…,n;②,即,,…,至少有一个发生,则称,,…,为样本空间Ω的一个划分。当,,…,为样本空间Ω的一个划分时,每次试验有且仅有其中一个发生。(2)全概公式:设随机试验的样本空间为Ω,,,…,为样本空间Ω的一个划分,B为任意一个事件,则.证明:注意:当0P(A)1时,A与就是Ω的一个划分,对任意事件B则有全概公式的最简单形式:例9P15例1-24盒中有5个白球3个黑球,连续不放回地从中取两次球,每次取一个,求第二次取球取到白球的概率。解:设A表示“第一次取球取到白球”,B表示“第二次取球取到白球”,则例10P16例1-25在某工厂中有甲、乙、丙三台机器生产同一型号的产品,它们的产量各占30%,35%,35%,并且在各自的产品中废品率分别为5%,4%,3%,求从该厂的这种产品中任取一件是废品的概率。解:设A1表示“从该厂的这种产品中任取一件产品为甲所生产”,A2表示“从该厂的这种产品中任取一件产品为乙所生产”,A3表示“从该厂的这种产品中任取一件产品为丙所生产”,B表示“从该厂的这种产品中任取一件为次品”,则由全概率公式得=30%×5%+35%×4%+35%×3%=3.95%(3)贝叶斯公式:设随机试验的样本空间为Ω,,,…,为样本空间Ω的一个划分,B为任意一个事件,且P(B)0,则,i=1,2,…,n.注意:①在使用贝叶斯公式时,往往先利用全概公式计算P(B);②理解贝叶斯公式“后验概率”的意义.例题11P17例1-28【例1-28】在例1-25的假设下,若任取一件是废品,分别求它是由甲、乙、丙生产的概率。解:由贝叶斯公式,例题12P17例1-29【例1-29】针对某种疾病进行一种化验,患该病的人中有90%呈阳性反应,而未患该病的人中有5%呈阳性反应,设人群中有1%的人患这种病,若某人做这种化验呈阳性反应,则他患这种疾病的概率是多少?解:设A表示“某人患这种病”,B表示“化验呈阳性反应”,则P(A)=0.01,,P(B|A)=0.9,由全概率公式得=0.01×0.9+0.99×0.55=0.0585再由贝叶斯公式得§1.4事件的独立性1.事件的独立性(1)概念:若P(AB)=P(A)P(B),则称事件A与事件B相互独立,简称A,B独立。解释:事件A,B相互独立的含义是:尽管A,B同时发生,事件A发生的概率对事件B发生的概率没有影响,如“两个同时射击的射击员击中靶子的环数”,“两个病人服用同一种药物的疗效”等。因此,在实际应用中,往往根据实际情况来判断事件的独立性,而不是根据定义。(2)性质:①设P(A)0,则A与B相互独立的充分必要条件是。证明:②若A与B相互独立,则A与,与B,与都相互独立。证明:只证,B相互
本文标题:自考04183概率论与数理统计(经管类) 自考核心考点笔记 自考重点资料
链接地址:https://www.777doc.com/doc-6370453 .html