您好,欢迎访问三七文档
1.1.1分类计数原理与分步计数原理思考?用一个大写的的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?26+10=36问题1.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4班,汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有3类方法,第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法;所以从甲地到乙地共有4+2+3=9种方法。一、分类计数原理完成一件事,有n类办法.在第1类办法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……,在第n类方法中有mn种不同的方法,则完成这件事共有2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数.1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理说明N=m1+m2+…+mn种不同的方法例1在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学生物学化学医学物理学工程学数学会计学信息技术学法学如果这名同学只能选一个专业,那么他共有多少种选择呢?解:这名同学在A大学中有5种专业选择,在B大学中有4种专业选择。根据分类计数原理:这名同学可能的专业选择共有5+4=9种。用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,···,B1,B2,···的方式给教室里的座位编号,总共能编出多少个不同的号码?思考?分析:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各个不同,因此共有6×9=54个不同的号码。字母数字得到的号码A123456789A1A2A3A4A5A6A7A8A9树形图问题2.如图,由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?A村B村C村北南中北南分析:从A村经B村去C村有2步,第一步,由A村去B村有3种方法,第二步,由B村去C村有3种方法,所以从A村经B村去C村共有3×2=6种不同的方法。二、分步计数原理完成一件事,需要分成n个步骤。做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有mn种不同的方法,则完成这件事共有2)首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数.1)各个步骤相互依存,只有各个步骤都完成了,这件事才算完成,将各个步骤的方法数相乘得到完成这件事的方法总数,又称乘法原理说明N=m1×m2×…×mn种不同的方法例2、设某班有男生30名,女生24名。现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?例3、浦江县的部分电话号码是05798415××××,后面每个数字来自0~9这10个数,问可以产生多少个不同的电话号码?变式:若要求最后4个数字不重复,则又有多少种不同的电话号码?0579841510101010×××=104分析:分析:=504010987×××例4、书架上第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育杂志.(2)从书架的第1、2、3层各取1本书,有多少种不同取法?N=4+3+2=9N=4×3×2=24(1)从书架上任取1本书,有多少种不同的取法?例5、要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左右两边墙上的指定位置,问共有多少种不同的挂法?加法原理乘法原理联系区别一完成一件事情共有n类办法,关键词是“分类”完成一件事情,共分n个步骤,关键词是“分步”区别二每类办法都能独立完成这件事情。每一步得到的只是中间结果,任何一步都不能能独立完成这件事情,缺少任何一步也不能完成这件事情,只有每个步骤完成了,才能完成这件事情。分类计数原理和分步计数原理,回答的都是关于完成一件事情的不同方法的种数的问题。区别三各类办法是互斥的、并列的、独立的各步之间是相关联的分类计数与分步计数原理的区别和联系:如图,从甲地到乙地有2条路,从乙地到丁地有3条路;从甲地到丙地有4条路可以走,从丙地到丁地有2条路。从甲地到丁地共有多少种不同地走法?课堂练习甲地丙地丁地乙地N1=2×3=6N2=4×2=8N=N1+N2=14
本文标题:1.1基本计数原理
链接地址:https://www.777doc.com/doc-6374404 .html