您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > VPSA变压吸附加压吸附真空解吸制氧站
PSA制氢装置培训教材目录第一节、概述第二节、吸附分离工艺原理第三节、工艺流程及工艺条件的选择第四节、主要设备第一节概述吸附现象早就被人们发现利用,早在数千年前,人门就开始利用木炭、酸性白土、硅藻土等物质所具有的强吸附能力进行防潮、脱臭和脱色,湖南长沙市出土的汉代古墓中就放有木碳,显然墓主当时是用木炭吸收潮气等作为防腐措施。因此吸附分离是一门古老的技术。变压吸附(PressureSwingAdsorption)气体分离与提纯技术成为大型化工工业的一种生产工艺和独立的单元操作过程(称为吸附分离工程),是在上世纪六十年代迅速发展起来的。由于最早的吸附剂吸附能力较低、选择性较差,吸附分离仅用在吸湿干燥、脱色、除臭、饮用水净化上,吸附剂往往是一次性使用,使用时能耗不高。1942年德国发表了第一篇无热吸附干燥和净化空气(脱除CO2和H2O)的专利文献,1959年Skarstrom发明了PSA气体分离技术(当时称为“等温吸附”或“无热吸附”)。上世纪60年代初,在世界能源危机情况下,美国联合碳化物公司(UCC)首次实现了变压吸附四床工艺技术的工业化,于1966年建成投产了第一套PSA法从含氢工业气体中回收高纯度氢的工业装置。随着世界能源的短缺,各国和各行业越来越重视低品位资源的开发与利用,以及各国对环境污染的治理要求也越来越高,由于吸附分离技术投资少、运行费用低、产品纯度高、操作简单、灵活、环境污染小、原料气源适应范围宽,使得吸附分离技术在钢铁工业、气体工业、电子工业、石油和化工工业中日益受到重视;另一方面,吸附剂也有了重大发展,如性能优良的分子筛吸附剂的研制成功,活性炭、活性氧化铝和硅胶吸附剂性能的不断改进,以及ZSM特种吸附剂和活性炭纤维的发明,都为连续操作的大型吸附分离工艺奠定了技术基础。我国石化行业在上世纪70年代开始引进吸附分离技术,从合成气中脱除CO2以制造高纯度氢气。中国西南化工研究设计院于上世纪70年代初开始进行采用变压吸附技术分离气体混合物的实验研究,并于1982年在上海建成了两套从氨厂弛放气中回收氢的变压吸附工业装置。由于变压吸附(PSA)气体分离技术是依靠压力的变化来实现吸附与再生的,因而再生速度快、能耗低,属节能型气体分离技术。并且,该工艺过程简单、操作稳定、对于含多种杂质的混合气可将杂质一次脱除得到高纯度产品。因而近三十年来发展非常迅速,随着吸附剂、工艺过程控制、仪表控制及工程实施等方面研究的深入,变压吸附技术在气体分离和纯化领域中的应用范围日益扩大,已广泛应用于含氢气体中氢气的提纯,混合气体中一氧化碳、二氧化碳、氧气、氮气、氩气和烃类的制取、各种气体的无热干燥等,而其中变压吸附制取纯氢技术的发展尤其令人瞩目。第二节吸附分离工艺原理一、基本概念吸附是指当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。我们通常所说的气体的吸附是指气体在与多孔性固体结束时,气体中一种或几种组分被吸着在固体表面的现象。1.吸附过程的分类根据吸附质与吸附剂分子之间的相互作用不同,吸附通常可分为四大类,即:化学吸附、活性吸附、毛细管凝缩、物理吸附。(1)化学吸附化学吸附是指吸附剂与吸附质两者分子之间发生有化学反应,并在吸附剂表面生成化合物的吸附过程。这种吸附过程一般进行的很慢,一般是不可逆的,解吸过程非常困难,吸附热接近于化学反应热,且吸附剂本身的性质对吸附质的选择性起着决定性。(2)活性吸附活性吸附是指吸附剂与吸附质两者分子之间相互作用,生成有表面络合物的吸附过程。这种络合物不是一般的络合物,吸附剂分子仍留在吸附剂的晶格上。这种吸附过程一般进行的也很慢,相间平衡持续时间较长;吸附热较大,一般接近于化学反应热;一般是不可逆过程,解吸也比较困难;吸附剂本身的性质对吸附质的选择性起着决定性作用。(3)毛细管凝缩毛细管凝缩是指固体吸附剂在吸附蒸气时,在吸附剂孔隙内发生的凝结现象。一般需加热才能完全再生。(4)物理吸附物理吸附是指依靠吸附剂与吸附质分子间的分子力(即范德华力和电磁力)进行的吸附过程。其特点是:吸附过程中没有化学反应,吸附热一般不大,接近于冷凝热;吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成;这种吸附是完全可逆的;除了固体表面状况之外,吸附剂本身性质对吸附质无选择作用。PSA制氢装置中的吸附主要为物理吸附。2.吸附力在物理吸附中,各种吸附剂对气体分子之所以有吸附能力是由于处于气、固相分界面上的气体分子的特殊形态。一般来说,只处于气相中的气体分子所受的来自各方向的分子吸引力是相同的,气体分子处于自由运动状态;而当气体分子运动到气、固相分界面时(即撞击到吸附剂表面时),气体分子将同时受到固相和气相中分子的引力,其中来自固相分子的引力更大,当气体分子的分子动能不足以克服这种分子引力时,气体分子就会被吸附在固体吸附剂的表面。被吸附在固体吸附剂表面的气体分子又被称为吸附相,其分子密度远大于气相,一般可接近于液态的密度。固体吸附剂表面分子对吸附相中气体分子的吸引力可由以下公式来描述:分子引力F=C1/rm-C2/rn(mn)其中:C1表示引力常数,与分子的大小、结构有关C2表示电磁力常数,主要与分子的极性和瞬时偶极矩有关r表示分子间距离因而对于不同的气体组分,由于其分子的大小、结构、极性等性质各不相同,吸附剂对其吸附的能力就各不相同。组分吸附能力氦气☆弱氢气☆氧气☆☆氩气☆☆氮气☆☆☆一氧化碳☆☆☆甲烷☆☆☆☆二氧化碳☆☆☆☆☆☆乙烷☆☆☆☆☆☆乙烯☆☆☆☆☆☆☆丙烷☆☆☆☆☆☆☆异丁烷☆☆☆☆☆☆☆☆丙烯☆☆☆☆☆☆☆☆戊烷☆☆☆☆☆☆☆☆丁烯☆☆☆☆☆☆☆☆☆硫化氢☆☆☆☆☆☆☆☆☆☆硫醇☆☆☆☆☆☆☆☆☆☆戊烯☆☆☆☆☆☆☆☆☆☆☆苯☆☆☆☆☆☆☆☆☆☆☆☆甲苯☆☆☆☆☆☆☆☆☆☆☆☆乙基苯☆☆☆☆☆☆☆☆☆☆☆☆☆☆苯乙烯☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆水☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆强图1为不同组分在分子筛上的吸附强弱顺序示意图二、吸附平衡1.吸附平衡吸附平衡是指在一定的温度和压力下,吸附剂与吸附质充分接触,最后吸附质在两相中的分布达到平衡的过程。在实际的吸附过程中,吸附包括两个过程:吸附质分子会不断地碰撞吸附剂表面并被吸附剂表面的分子引力束缚在吸附相中(吸附);同时吸附相中的吸附质分子又会不断地从吸附剂分子或其它吸附质分子得到能量,从而克服分子引力离开吸附相(解吸);随着吸附质在吸附剂表面数量的增加,解吸速度逐渐加快,当吸附和解吸速度相当,一定时间内进入吸附相的吸附质分子数和离开吸附相的吸附质分子数相等,从宏观上看,吸附量不再增加时,吸附过程就达到了平衡。对于物理吸附而言,动态吸附平衡很快就能完成。2.平衡吸附量吸附过程达到吸附平衡时,吸附剂对吸附质的吸附量称为平衡吸附量。平衡吸附量的大小与吸附剂的物化性能——比表面积、孔结构、粒度、化学成分有关,也与吸附质的物化性能、压力(或浓度)、温度等因素有关。在吸附剂和吸附质一定时,平衡吸附量就是吸附质的分压(或浓度)和温度的函数。3.吸附等温线(物理吸附的两个性质)在实际中,经常用吸附等温线来描述吸附过程中平衡吸附量与吸附质分压(或浓度)的关系,吸附等温线就是在一定的温度下,测定出不同压力下,吸附质组份在吸附剂上的平衡吸附量,将不同压力下得到的平衡吸附量连接而成的曲线。(1)温度和压力对平衡吸附量的影响当固定温度(或压力)时,平衡吸附量就是压力(或温度)的单值函数,从而得到吸附等温函数(或吸附等压函数)。对于确定的吸附剂和吸附质(吸附体系),在一定的温度和压力下,平衡吸附量是一个定值。图2给出了不同温度下的吸附等温线示意图。图2不同温度下的吸附等温线示意图从上图的B→C和A→D可以看出:在压力一定时,随着温度的升高吸附剂的吸附容量逐渐减小。从上图的B→A可以看出:在温度一定时,随着吸附质分压的升高吸附剂的吸附容量逐渐增大。从微观上解释,出现这种现象的主要原因是:由于压力越高单位时间内撞击到吸附剂表面的气体分子数越多,因此压力越高平衡吸附容量也就越大;而温度越高气体分子的动能越大,能被吸附剂表面分子引力束缚的分子就越少,因此温度越高平衡吸附容量就越小。吸附剂的这一特性也可以用Langmuir吸附等温方程来描述:PXiKPXiKAi211(Ai:吸附质i的平衡吸附量,K1、K2:吸附常数,P:吸附压力,Xi:吸附质i的摩尔组成)。在通常的工业变压吸附过程中,由于吸附--解吸循环的周期短(一般只有数分钟),吸附热来不及散失,恰好可供解吸之用,所以吸附热和解吸热引起的吸附床温度变化一般不大,吸附过程可近似看做等温过程,其特性CBDT2T1⊿Qtp变压吸附变温吸附温度T2>T1⊿QpP1P2吸附量⊿Qt组分分压A分压P2>P1基本符合Langmuir吸附等温方程。(2)吸附剂对不同组分的吸附能力不同(即具有选择性)对于同一种吸附剂,不同的吸附质,在相同的温度和压力下,由于吸附质各组分分子的结构、大小、极性各不相同,吸附剂对吸附质的吸附能力不同,吸附剂的平衡吸附量是不同的,即具有选择性。下面给出的是某种吸附剂对不同的气体组分在38℃下的吸附等温曲线。图3不同气体组分38℃下在活性炭类吸附剂上的吸附等温线气体吸附分离工艺过程之所以得以实现是由于吸附剂在物理吸附中具有的上述两个基本性质:一是对不同组分的吸附能力不同(即具有选择性),二是吸附质在吸附剂上的吸附容量随吸附质的分压和温度而变化,分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。三、吸附传质过程AdsorptionIsthern(STATICSORBAT38C)10100200300400500600700800吸附分压P/P0(KPa)VolumeAdsorptionH2ArO2N2COCH4CO2C2C31.吸附的传质过程吸附剂都是内部具有很多小孔的多孔性物质,吸附质在吸附剂上的吸附过程十分复杂。以气体吸附质在固体吸附剂上的吸附过程为例,吸附质从气体主流至吸附剂内部的传递过程分为两个阶段:第一阶段是从气体主流通过吸附剂颗粒周围的气膜达到吸附剂的表面,称为外部传递过程或外扩散;第二阶段是从吸附剂颗粒表面传向颗粒孔隙内部,称为孔内部传递过程或内扩散。这两个阶段是按先后顺序进行的,在吸附时气体先通过气膜到达颗粒表面,然后才能向颗粒内扩散,脱附则逆向进行。吸附质在吸附剂上的扩散过程示意图见图4。气体分子到达颗粒外表面时,一部分会被外表面所吸附,而被吸附的分子有可能沿着颗粒内的孔壁向内深入扩散,称为表面扩散;一部分气体分子还可能在颗粒内的孔中向深入扩散,称为孔扩散;在孔扩散的途中气体分子又可能与孔壁表面碰撞而被吸附,所以内扩散是既有平行又有顺序的吸附过程,可以表示为表面吸附表面扩散外扩散图4吸附质在吸附剂上扩散的示意图孔扩散孔扩散直到中心内表面吸附表面扩散可见吸附传递过程由三部分:外扩散、内扩散和表面吸附三部分组成,吸附过程的总速度取决于最慢阶段的速度。2.吸附的传质区、吸附前沿、流出曲线及穿透点(1)吸附前沿将颗粒大小均一的吸附剂装填在固定吸附床中,含有一定浓度(分压)吸附质的混合气体以恒定的流速通过吸附床层,床层内不同位置上的吸附质浓度随时间而变化。理想状况下,假设床层内的吸附剂完全没有传质阻力,即吸附速度无限大,则吸附质一直是以初始浓度向气体流动方向推进,类似于活塞在气缸内推进。如图5所示。实际吸附过程中,由于传质阻力的存在,流体的速度、吸附相平衡以及吸附机理等各方面的影响,吸附质浓度恒定的混合气体通过吸附床层时,首先是在吸附床层的进口处形成S形曲线,如图6所示,此曲线称为吸附前沿(或传质前沿)。(2)吸附的传质区图
本文标题:VPSA变压吸附加压吸附真空解吸制氧站
链接地址:https://www.777doc.com/doc-6429851 .html