您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 神经网络基本介绍ppt课件
第6章神经网络辨识及其应用神经网络辨识的特点•不要求建立实际系统的辨识格式,即可省去系统结构建模这一步骤;•可以对本质非线性系统进行辨识;•辨识的收敛速度不依赖于待辨识系统的维数,只于神经网络本身及其所采用的学习算法有关;•在参数辨识中,神经网络的连接权值可以对应于模型参数,通过权值的调节可使网络输出逼近于系统输出;•神经网络作为实际系统的辨识模型,实际上也是系统的一个物理实现,可以用于在线控制;神经网络是一种黑箱建模工具。人工神经网络(简称神经网络,NeuralNetwork)是模拟人脑思维方式的数学模型。神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为。神经网络反映了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。6.1神经网络介绍20世纪80年代以来,人工神经网络(ANN,ArtificialNeuralNetwork)研究所取得的突破性进展。神经网络辨识是采用神经网络进行逼近或建模,神经网络辨识为解决复杂的非线性、不确定、未知系统的控制问题开辟了新途径。神经网络的发展历程经过4个阶段。1、启蒙期(1890-1969年)1890年,W.James发表专著《心理学》,讨论了脑的结构和功能。1943年,心理学家W.S.McCulloch和数学家W.Pitts提出了描述脑神经细胞动作的数学模型,即M-P模型(第一个神经网络模型)。神经网络发展历史1949年,心理学家Hebb实现了对脑细胞之间相互影响的数学描述,从心理学的角度提出了至今仍对神经网络理论有着重要影响的Hebb学习法则。1958年,E.Rosenblatt提出了描述信息在人脑中贮存和记忆的数学模型,即著名的感知机模型(Perceptron)。1982年,物理学家Hoppield提出了Hoppield神经网络模型,该模型通过引入能量函数,实现了问题优化求解,1984年他用此模型成功地解决了旅行商路径优化问题(TSP)。1986年,在Rumelhart和McCelland等出版《ParallelDistributedProcessing》一书,提出了一种著名的多层神经网络模型,即BP网络。该网络是迄今为止应用最普遍的神经网络。4新连接机制时期(1986-现在)神经网络从理论走向应用领域,出现了神经网络芯片和神经计算机。神经网络主要应用领域有:模式识别与图象处理(语音、指纹、故障检测和图象压缩等)、控制与优化、系统辨识、预测与管理(市场预测、风险分析)、通信等。神经网络原理神经生理学和神经解剖学的研究表明,人脑极其复杂,由一千多亿个神经元交织在一起的网状结构构成,其中大脑皮层约140亿个神经元,小脑皮层约1000亿个神经元。人脑能完成智能、思维等高级活动,为了能利用数学模型来模拟人脑的活动,导致了神经网络的研究。神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支—树突组成。轴突功能是将本神经元的输出信号(兴奋)传递给别的神经元,其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接收到的所有信号进行简单地处理后,由轴突输出。神经元的轴突与另外神经元神经末梢相连的部分称为突触。图单个神经元的解剖图神经元由三部分构成:(1)细胞体(主体部分):包括细胞质、细胞膜和细胞核;(2)树突:用于为细胞体传入信息;(3)轴突:为细胞体传出信息,其末端是轴突末梢,含传递信息的化学物质;(4)突触:是神经元之间的接口(104~105个/每个神经元)。通过树突和轴突,神经元之间实现了信息的传递。图1单神经元结构模型图中为神经元的内部状态,为阈值,为输入信号,,为表示从单元到单元的连接权系数,为外部输入信号。iuijxnj,,1ijwjuisiujiijijisxwNet)(iiNetfu)()(iiiNethugyiiuug)()(iiNetfy上图中所示的模型可描述为:,即通常情况下,取常用的神经元非线性特性有以下三种:阈值型、分段线性型和函数型。神经元具有如下功能:(1)兴奋与抑制:如果传入神经元的冲动经整和后使细胞膜电位升高,超过动作电位的阈值时即为兴奋状态,产生神经冲动,由轴突经神经末梢传出。如果传入神经元的冲动经整和后使细胞膜电位降低,低于动作电位的阈值时即为抑制状态,不产生神经冲动。(2)学习与遗忘:由于神经元结构的可塑性,突触的传递作用可增强和减弱,因此神经元具有学习与遗忘的功能。决定神经网络模型性能三大要素为:(1)神经元(信息处理单元)的特性;(2)神经元之间相互连接的形式—拓扑结构;(3)为适应环境而改善性能的学习规则。Delta(δ)学习规则(梯度下降法)误差准则函数:212EeEWW神经网络特征(1)能逼近任意连续的非线性函数;(2)信息的并行分布式处理与存储;(3)可以多输入、多输出;(4)便于用超大规模集成电路(VISI)或光学集成电路系统实现,或用现有的计算机技术实现;(5)能进行学习,以适应环境的变化。神经网络控制的研究领域(1)基于神经网络的系统辨识①将神经网络作为被辨识系统的模型,可在已知常规模型结构的情况下,估计模型的参数。②利用神经网络的线性、非线性特性,可建立线性、非线性系统的静态、动态、逆动态及预测模型,实现非线性系统的建模。(2)神经网络控制器神经网络作为实时控制系统的控制器,对不确定、不确知系统及扰动进行有效的控制,使控制系统达到所要求的动态、静态特性。(3)神经网络与其他算法相结合将神经网络与专家系统、模糊逻辑、遗传算法等相结合,可设计新型智能控制系统。(4)优化计算在常规的控制系统中,常遇到求解约束优化问题,神经网络为这类问题的解决提供了有效的途径。
本文标题:神经网络基本介绍ppt课件
链接地址:https://www.777doc.com/doc-6462999 .html