您好,欢迎访问三七文档
矿山压力与岩层控制1.名词解释1.矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力;2.矿山压力显现:由于矿山压力作用使巷硐周围岩体和支护物产生的种种力学现象;4.原岩应力:未受开采影响的岩体内,由于岩体自重和构造运动等原因引起的应力;4.支撑压力:回采空间周围煤岩体内应力增高区的切向应力;5.周期来压:老顶平衡结构周期性失稳而施加给工作面以大型压力的过程6.初次来压:老顶平衡结构第一次失稳而施加给工作面以大型压力的过程7.砌体梁:工作面上下两区破断的岩块咬合形成的外表似梁,实质是拱的平衡结构8.关键层:对采场上覆岩层局部或直至地表的全部岩层活动起主要控制作用的岩层9.冲击地压:聚集在矿井巷道和采场周围岩体中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和煤岩体破坏,支架与设备损坏,人员伤亡,部分巷道垮落破坏的力学现象。10.底板比压:底板单位面积所受支架的压力11.回采工作面:在煤层或矿床的开采过程中,直接进行采煤或采有用矿物的工作空间2.简答题1.原岩应力分布规律答:(1)实测铅直应力基本上等于上覆岩层重量;(2)水平应力普遍大于铅直应力;(3)平均水平应力与铅直应力的比值随深度增加而减小;(4)最大水平主应力和最小水平主应力一般相差较大。2.绘图说明横三区/竖三带三区:A煤壁支撑影响区B离层区:C重新压实区:三带:I垮落带:II裂隙带III弯曲带(硬度越高,三带发育越好)(自下至上)3.绘图说明支柱特性工作支柱力学特性——受顶板压力作用,支柱变形(下缩)性质。4.关键层具有的特征①几何特征,相对于其他同类岩层单层厚度较厚;②岩性特征,相对于其他岩层较为坚硬,即弹性模量较大,强度较高;③变形特征,关键层下沉变形时,其上覆全部或局部岩层的下沉量同步协调;④破断特征,关键层的破断将导致全部或局部岩层的破断,引起较大范围内的岩层移动⑤支承特征,关键层破坏前以“板”(或简化为“梁”)结构作为全部岩层或局部岩层的承载主体,断裂后则成为砌体梁结构,继续成为承载主体5.影响采场矿山压力显现的因素答:①采高与控顶距的影响;②工作面推进速度的影响;③开采深度的影响;④煤层倾角的影响;⑤分层开采对矿山压力显现的影响;6.采场围岩与支架之间相互作用原理答:支架围岩是相互作用的一对力,支架受力的大小及其在回采工作面分布的规律与支架性能有关,支架结构及尺寸对顶板压力有一定影响。1)横向:“煤体—支架—垮落矸石”支撑系统“煤体—支架—垮落矸石”支撑系统:煤体、垮落矸石为平衡结构支点(拱脚),需承受更多载荷;“煤体—支架—垮落矸石”支撑系统为静不定系统,刚度大的承受载荷也大;煤体刚度大于垮落矸石及支架,为主要承载体;支架受到保护,刚度较小,承载较小。2)纵向:“老顶—直接顶—支架—底板”支撑系统老顶以上岩层为载荷;直接顶、底板的刚度直接影响支架特性的发挥;支架特性为插背物、顶梁、支柱、柱鞋的综合性质;当其它结构物刚度很大时,支撑系统的特性即为支柱的刚度;在整个支架群中,该支撑系统的特性影响到支架所受载荷的大小。特点:①支架-围岩是相互作用的一对力。 ②支架受力大小及其在回采工作面分布的规律与支架性能有关。还与支架与围岩支撑系统的总体特性有关。事实证明,刚性、急增阻式、微增阻式或恒阻式支架受力在工作面的分布状态是不一致的,恒阻式支架的受力比较均匀。③支架结构及尺寸不同对顶板压力影响和维护效果不同。实际生产中证明在支架架型选择合适时,可以用最小的工作阻力维护好顶板。7.巷道围岩控制原理巷道围岩控制是指控制巷道围岩的矿山压力和周边位移所采取措施的总和。其基本原理是:人们根据巷道围岩应力、围岩强度及他们之间的相互关系,选择合适的巷道布置和保护及支护方式。降低围岩应力,增加围岩强度,改善围岩受力条件和赋存环境,有效地控制围岩的变形、破坏。8.沿空掘/留巷矿压显现规律 沿空留巷的顶板下沉规律回采工作面推进引起的上覆岩层运动、其发展是自下而上的,上部具有明显的滞后现象、沿空留巷的顶板会在较长时间内受到老顶上覆岩层运动的影响。(1)采面前20—40m处煤层上覆岩层开始运动,但下沉速度很小,为岩层起始沉降期。(2)煤层开采后,垮落带岩层冒落,规则移动带岩层及上覆岩层急剧沉降,在工作面后方10—20m处,下沉速度最大。在工作面后方0—60m范围内,下沉量占最终下沉量的80%左右,称为岩层强烈沉降期。(3)在工作面后方约60m以外,规则移动带及上覆岩层沉降速度逐渐衰减,在工作面后100m左右,岩层运动基本稳定。这个时期内岩层的下沉量占最终下沉量的15%左右,称为岩层沉降衰减期。(4)如果直接顶板冒落能够填满采空区,使老顶处丁平衡状态,采动期间沿空留巷的顶板下沉量与煤层采厚呈正比关系、—般为采高的10%—20%,基本上属于“给定变形”。沿空巷道的顶板往往明显地向采空区方向倾斜,倾角一般为3。一6。。9.冲击矿压发生特点①突发性。无预兆,过程短暂,持续时间几秒到几十秒,难于准确预报发生时间、地点和强度②瞬时震动性。像爆炸强烈震动,重型设备被移动,人员被弹起摔倒,震动波及范围可达几公里甚至几十公里,地面有地震感觉③巨大破坏性。大量煤体突然抛出,堵塞巷道,破坏支架;造成惨重的人员伤亡和巨大的生产损失④复杂性。各种条件和采煤方法均出现过10.冲击矿压发生机理答:主要概括为:强度理论,能量理论,冲击倾向性理论。强度理论:井巷和采场周围产生应力集中,当应力达到煤岩体的强度极限时,煤岩体就会突然发生破坏,形成冲击矿压能量理论:矿体—围岩系统在其力学平衡状态破坏时所释放的能量大于所消耗的能量时就发生冲击矿压冲击倾向性理论:煤岩介质产生冲击破坏的固有能力或属性,是冲击矿压发生的必要条件3.论述题1.煤矿绿色开采体系内涵答:针对煤矿中土地、地下水、瓦斯以及矸石排放等,“绿色开采技术”主要包括以下内容:1、水资源保护—形成“保水开采”技术;2、土地与建筑物保护—形成离层注浆、充填与条带开采技术;3、瓦斯抽放一形成“煤与瓦斯共采”技术;4、煤层巷道支护技术与减少酐石徘放技术;5、地下气化技术。由于成岩时间及矿物成分不同,煤系地层形成丁厚度不等、强度石同的多层岩层。其小覆岩关键层将对采场上程思层活动起土要的控制作用。为了弃洁岩居移动出厂仟亡传递的动态过程,并对岩层移动过程中形成的采场矿压显现、煤片体中水与瓦斯的流动和地表沉陷等状态的变化进行有效监侧与控制,关键在于弄清关键层的变形破断及其运动规律,以及其运动过程中与软岩层间的相互耦合作用关系。关键层理论的提出实现了矿山压力、岩层移功与地表沉陷、采动煤岩体中水与瓦斯流动研究的有机统一.为更全面深入地解释采动岩体活动规律与采动损害现象奠定了基础,为煤矿绿色开采技术研究提供了理论平台。2.锚杆支护理论及运用性答:一、悬吊理论对于回采巷道揭露的层状岩体,直接顶板均有弯曲下沉变形趋势,如果使用锚杆及时将其挤压,并悬吊在老顶上,直接顶板就不会与老顶离层乃至脱落。 二、组合梁理论:使用锚杆将各层“装订”成一个整体的组合梁,防止岩石沿层面滑动,避免各岩层出现离层现象。在上覆岩层荷载作用下,这种较厚的组合梁比单纯的迭加梁,其最大弯曲应变和应力将大大减小,挠度亦减小。而且各层间摩擦阻力愈大,整体强度愈大,补强效果愈好。但是,这种理论在处理岩层沿巷道纵向有裂缝时梁的连续性问题和梁的抗弯强度问题时有一定的局限性。 三、组合拱理论组合拱原理认为,在拱形巷道围岩的破裂区中,安装预应力锚杆时,在杆体两端将形成圆锥形分布的压应力,如果沿巷道周边布置的锚杆间距足够小,各个锚杆的压应力维体相互交错,这样使巷道周围的岩层形成一种连续的组合带(拱)。这个组合拱可承受上部岩石的径向载荷,如同碹体起到岩层补强的作用,承载外围的压力。组合拱理论的不足是缺乏对被加固岩体本身力学行为的进一步探讨,与实际情况有一定差距,在分析过程中没深入探索围岩—支护的相互作用。 四、最大水平应力理论:最大水平应力理论,论述了巷道围岩水平应力对巷道稳定性的影响以及锚杆支护所起的作用。在最大水平应力作用下,巷道顶底板岩层发生剪切破坏,因而会出现错动与松动引起层间膨胀,造成围岩变形。锚杆所起的作用是约束其沿轴向岩层膨胀和垂直于轴向的岩层剪切错动,因此要求具备有强度大、刚度大、抗剪阻力大的高强锚杆支护系统。 五、围岩强度强化理论:该理论的要点是:(1)巷道锚杆支护的实质是锚杆和锚固区域的岩体相互作用形成统一的承载结构。(2)巷道锚杆支护可提高锚固体的力学参数(E、C、φ),改善被锚固体的力学性能。(3)利用锚杆支护,可以提高锚固区域岩体的强度,可以有效的巷道围岩存在破碎区、塑性区和弹性区,锚杆锚固区的岩体则处于破碎区或处于上述2~3个区域中,相应锚固区的岩石强度处于峰后强度或残余强度,锚杆支护使巷道围岩特别是处于峰后区围岩强度得到强化,提高峰值强度和残余强度。(4)煤巷锚杆支护可以改变围岩的应力状态,增加围压,从而提高围岩的承载能力。(5)巷道围岩锚固体强度提高以后,可减少巷道周围破碎区、塑性区的范围和巷道的表面位移,控制围岩破碎区、塑性区的发展,从而有利于巷道围岩的稳定。3.冲击地压解危与支护措施答:根据冲击矿压的成因和机理,发生冲击矿压必须具备两个方面的因素:一是高应力或集中高能量,这种状况可能是由于岩体自重在开采条件下形成的应力集中,也可能是内于构造应力的积聚,二是煤岩本身具有冲击倾向性。其防治措施也就应从两个方面考虑:一是降低应力(或能量)的集中程度;二是改变煤、岩体的物理力学性质,以降低其冲击的倾向性。防治冲击矿压的主要措施有:1.降低应力集中程度1)开采解放层。在煤层群条件下,首先开采没有冲击危险或危险性较小的煤层,使构造应力得到解除,并且使岩层经过一次扰动。在此范围内进行采掘工程,应力集中程度就可能降低。2)推行无煤往开采,采空区尽量少留煤住;尽量采用跨上山采煤。从而消除应力在煤往上集中叠加的可能性;3)合理安排采掘程序,避免形成三面采空的“孤矿”。2.改变煤岩的物理力学性质:1)高压注水,人为地在煤岩内部造成一系列弱面,并起软化作用,增加塑性变形量,从而减少弹性能聚积的程度;2)放松动震动炮,释放煤体内部积聚的能量。3)孔槽卸压,用大直径钻孔或切沟槽使媒体松动,达到御除压力4.冲击地压预测方法1.综合指数法2.钻屑法3.微震法4.电磁辐射法5.综合预测法5.巷道围岩控制方法(主动/被动)(1)留设煤柱控制岩层移动包含1、部分开采(条带开采和房柱式开采);2.留设保护煤柱;(2)充填法控制岩层移动;(3)调整开采工艺及参数控制岩层移动,如限厚开采、协调开采、上行开采等。9、试说明矿山压力和矿山压力显现的关系。答:矿山压力和矿山压力显现是两个不同的概念,两者具有因果关系。后者是由前者引起的,没有前者就没有后者。有些矿山压力显现的大小直接由矿山压力引起,如:巷道围岩的变形和破坏,煤壁的压酥和片帮等都随矿山压力的增大而变的更加强烈;而有的矿山压力显现虽然也是由矿山压力引起的,但它们还要受其他因素的影响。如:工作面顶板下沉,支架上所承受的载荷等,它们并不随矿山压力的增大而成正比的增大。顶板下沉受工作面上覆岩层运动规律的制约,它和煤层的采高及工作面的控顶距成正比。支架上所承受载荷的大小与支架本身的特性及顶板下沉量的大小有关。从以上分析可以看出,矿山压力大,矿山压力显现不一定强烈。沿空留巷:如果通过加强支护或采用其他有效方法,将相邻区段巷道保留下来,供本区段工作面回采时使用的巷道,称为沿空保留(煤体—无煤柱)巷道。(203)沿空掘巷:巷道一侧为煤体,另一侧为采空区,如果采空区一侧采动影响已经稳定后,沿采空区边缘掘进的巷道称为沿空掘进(煤体—无煤柱)巷道(203)
本文标题:矿山压力与岩层控制
链接地址:https://www.777doc.com/doc-6483396 .html