您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 反比例函数的图像和性质(1)教学案例分析
1反比例函数的图像和性质(1)教学案例分析摘要:本文主要从教材分析、学习类型和任务分析、教学内容分析、教学目标的确定、教学重难点的分析、例习题的意图分析等方面着笔,并结合具体的教学过程,对教学行为所体现的数学思想进行了较为深入的挖掘和比较详尽的分析,力求对其他章节的教学起到一定的借鉴和指导作用。关键词:具体教学过程数学思想案例分析一、教材背景分析到九年级上册一开始就学习“反比例函数”.这样编排的好处是因为反比例函数根据《数学课程课标》与原教材相比本章内容要求有所提高,主要表现在:其一性质的探索过程——根据图象和解析式探索并理解其性质;其二在实际问题中的应用.这是符合新课改的理念,总的来说是探讨知识发生的过程,培养学生自己探索问题,同时联系实际,提高学生分析解决问题的能力。图象的两个分支都无限接近但永远达不到x轴和y轴.因为从教学实践看,学生对此不易理解,这条性质实际应用意义也不大.假如学生程度较好,老师在这方面也可以适当拓展.从编排顺序来看,原来浙教版中,本章内容放在初二下的“函数及其图象”一章中,编排顺序是平面直角坐标系—函数—正比例函数—反比例函数.本套教科书采用分步到位、穿插编排的方式.在八年级上册安排了“图形与坐标”、“一次函数”,反比例函数图像对思维要求比较高,图象分两支,且又是曲线,学生理解相对困难,略放后面与学生接受能力、认知水平相当,为学生探索理解反比例函数创造条件。二、学习类型与任务分析①学习结果类型分析(一)学习结果:会画反比例函数的图像,通过反比例函数图象的分析,探索并掌握反比例函数图象的性质。(1)反比例函数解析式和图像是数学事实;(2)反比例函数是数学概念;(3)用“描点法”画函数图像的一般步骤是数学原理;(4)用“描点法”画反比例函数图像是数学技能;(5)从函数解析式到函数图像的画法的数形结合的思想数学思想方法;(6)根据函数图像性质求自变量与函数的取值范围是数学问题解决。②学习形式类型分析(二)学习形式:由于反比例函数的图像是根据反比例函数解析式用描点法得到的这是在原有知识的基础上学习一个水平更高的概念,常常采用发现学习的模式。因此本课采用上位学习形式。③学习任务分析(三)学习任务:(1)学画反比例函数的图像;(2)通过反比例函数图象的分析,探索反比例函数图象的性质。三、教学内容分析进一步熟悉作函数图象的步骤,会作反比例函数的图象,并由图象归纳概括出反比例函数图像的性质。四、教学目标1.知识与技能(1)进一步熟悉作函数图象的步骤,会作反比例函数的图象,并由图象2纳概括出反比例函数的性质。(2)体会函数的三种表示方法及相互转换,对函数进行认识上的整合,提升学生对数形结合思想的认识。2.过程与方法通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.培养与发展学生的探究能力,提高从图形中提取有效信息的能力,训练观察与分析、归纳与概括的能力。3.情感、态度与价值观由图象的画法和分析,体验数学活动中的探索性和创造性,感受数学美,并通过图象的直观教学激发学习兴趣,增强学生对数学学习的好奇心和求知欲。五、教学重点理解并掌握反比例函数的图象和性质六、教学难点正确画出图象,通过观察、分析,归纳出反比例函数的性质七、认知难点与突破方法画反比例函数图象前,应先让学生回忆一下画函数图象的基本步骤,即:列表、描点、连线,其中列表取值很关键。反比例函数xky(k≠0)自变量的取值范围是x≠0,所以取值时应对称式地选取正数和负数各一半,并且互为相反数,通常取的数值越多,画出的图象越精确。连线时要告诉学生用平滑的曲线连接,不能用折线连接。教学时,老师要带着学生一起画,注意引导,及时纠错。在探究反比例函数的性质时,可结合正比例函数y=kx(k≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容。这里要强调一下,反比例函数的图象位置和增减性是由反比例系数k的符号决定的;反之,双曲线的位置和函数性质也能推出k的符号,注意让学生体会数形结合的思想方法。八、例、习题的意图分析教材第48页的例2是让学生经历用描点法画反比例函数图象的过程,一方面能进一步熟悉作函数图象的方法,提高基本技能;另一方面可以加深学生对反比例函数图象的认识,了解函数的变化规律,从而为探究函数的性质作准备。补充例1的目的一是复习巩固反比例函数的定义,二是通过对反比例函数性质的简单应用,使学生进一步理解反比例函数的图象特征及性质。补充例2是一道典型题,是关于反比例函数图象与矩形面积的问题,要让学生理解并掌握反比例函数解析式xky(k≠0)中k的几何意义。九、教学过程设计课堂引入提出问题:1.一次函数y=kx+b(k、b是常数,k≠0)的图象是什么?其性质有哪些?正比例函数y=kx(k≠0)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么?3.反比例函数的图象是什么样呢?例习题分析例2.见教材P48,用描点法画图,注意强调:(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以“0”3为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴例1.(补充)已知反比例函数32)1(mxmy的图象在第二、四象限,求m值,并指出在每个象限内y随x的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1kxy(k≠0)自变量x的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k<0,则m-1<0,不要忽视这个条件略解:∵32)1(mxmy是反比例函数∴m2-3=-1,且m-1≠0又∵图象在第二、四象限∴m-1<0解得2m且m<1则2m例2.(补充)如图,过反比例函数xy1(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小,可得()(A)S1>S2(B)S1=S2(C)S1<S2(D)大小关系不能确定分析:从反比例函数xky(k≠0)的图象上任一点P(x,y)向x轴、y轴作垂线段,与x轴、y轴所围成的矩形面积kxyS,由此可得S1=S2=21,故选B随堂练习1.已知反比例函数xky3,分别根据下列条件求出字母k的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y随x的增大而增大2.函数y=-ax+a与xay(a≠0)在同一坐标系中的图象可能是()43.在平面直角坐标系内,过反比例函数xky(k>0)的图象上的一点分别作x轴、y轴的垂线段,与x轴、y轴所围成的矩形面积是6,则函数解析式为课后练习1.若函数xmy)12(与xmy3的图象交于第一、三象限,则m的取值范围是2.反比例函数xy2,当x=-2时,y=;当x<-2时;y的取值范围是;当x>-2时;y的取值范围是已知反比例函数yaxa()226,当x0时,y随x的增大而增大,求函数关系式案例分析《新课程标准》强调教学过程是师生交往、共同发展的互动过程.在教学过程中要处理好传授知识与培养能力的关系,注重培养学生的独立性,引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程.课堂应较多地出现师生互动、平等参与的生动局面,学习方式开始逐步多样化,乐于探究、主动参与、勤于动手成为教学过程中教师的共识.反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应加强反比例函数与正比例函数的对比:应该有意识地加强反比例函数与正比例函数之间的对比,对比可以从以下几个方面进行:(1)两种函数的关系式有何不同?两种函数的图象的特征有何区别?(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。本节课主要通过开放式的提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点.用科学的方法解决问题,培养学生科学的态度与精神.《新课程标准》要求,我们应该努力提高计算机技术应用于数学教学过程的水平,把现代信息技术作为学生学习数学和解决问题的强有力的工具,改善学生的学习.为此,在教学手段上,本节课大量使用多媒体辅助教学,既能体现知识的背景材料,又能一下子引起学生的注意力,有效地节省了时间,增大了课堂容量。生动形象的动画演示,动感强、直观性好,既加深了学生的理解,又培养了学生的抽象思维能力,同时也向学生渗透了归纳类比、数形结合的数学思想方法。基本的思维能力、科学态度、理性精神是未来公民生存与发展所需要的最基本也是最重要的责任.为此,本节课在猜想反比例函数的图象到底是什么时,鼓励学生用科学的态度、5探索的方法来验证,而不是采用“告诉”的方式;当学生在连接各点遇到困难时,引导他们寻找解决的问题的思路,并在解决问题的过程中总结获得的经验,而不是直接给出解决问题的方案.《新课程标准》强调,在培养学生“克服困难的自信心、意志力”方面,我们应当关注两件事:①向学生提供具有挑战性的问题,使他们有机会经历克服困难的活动;②让他们在从事这些活动的过程中获得成功的体验,……为此,本节课从提出问题到解决问题的过程当中,提供了“阶梯”式的问题串,使每一个学生都能够在活动中既有成功的体验,也有面临挑战的机会和经历,锻炼了学生克服困难的意志,增强了学生的自信心.不足与改进:在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在学生画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,说出具体的图象的特征,为下面的教学活动作很好的铺垫.我的改进设想是:在学生画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?”留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔.通过这节课的教学,笔者深刻的认识到:教师始终是学生学习的引导者,学生是以研究者、探索者的角色出现在教学过程中,这样使得教学过程成为一个再发现、再创造的认识过程。古人云:“授人鱼,不如授人以渔”因此在教学设计中重视学法渗透,自然地把学习方法结合知识传授给学生,让同学们明白,在数学王国里,成功和机遇永远属于那些勤于思考、勇于探索的人。参考文献:作者:《新课程初中数学课堂教学专题培训》编委会书名:《新课程初中数学课堂教学专题培训——数与代数教学案例分析》出版社:电化教育电子音像出版社2009年出版
本文标题:反比例函数的图像和性质(1)教学案例分析
链接地址:https://www.777doc.com/doc-6489284 .html