您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > UASB反应器启动过程中的动力学参数K2王捷
39 12200612 JournalofTianjinUniversityVo.l39 No.12Dec.2006 UASBK′2*王 捷,张宏伟,贾 辉(,300072) :上流式厌氧污泥床(UASB)反应器启动中的操作是运行控制最为关键的环节.为了给现场调试提供定量化的参数依据,研究基于UASB的完全混合模型和Eckenfelder一级反应动力学模型,引入可综合反映UASB内污泥浓度变化和微生物降解速率的动力学参数K′2,并推导出其关于温度的修正式.分别结合UASB处理低浓度有机废水的小试和中试初次启动试验,对K′2的物理意义及在启动阶段中的变化特点进行了分析.结果表明,K′2是一个表观UASB启动时不同负荷阶段工作状态的参数,通过对启动阶段K′2变化趋势的线性拟合得到斜率k可表明反应器内部活性微生物积累的快慢,并可借此来判别启动方法的优劣;根据设计水力停留时间和预期去除率得到的K′2可作为用以评价UASB启动是否成功的标志之一.:;;;:X703.1 :A :0493-2137(2006)12-1405-06KineticParameterK′2intheStart-upProcessofUASBReactorWANGJie,ZHANGHong-wei,JIAHui(SchoolofEnvironmentScienceandEngineering,TianjinUniversity,Tianjin300072,China)Abstract:Controllingstrategyinup-flowanaerobicsludgeblanket(UASB)start-upprocessisakeyaspectinoperation.Toprovidesomeparametersforoperationonsite,basedonEckenfelderequationandfullymixedmodel,akineticparameterK′2whichcangenerallyreflectthecharacteristicsofsludgeconcentrationandmicro-organismmetabolicvelocitywasintroducedinthisstudy.Additionally,thetemperature-modifiedequationofK′2wasdeduced.ThecharacteristicsandtrendsofK′2instart-upprocessesofalabscaleandapilotwerestu-died.TheresultsrevealedthatK′2representedtheperformanceofUASBatdifferentorganicloads.Alinearfit-tingmethodwasused,andtheslopeofthetrendlinereflectedthespeedofactivemicroorganismaccumulationinthereactor.Theslopecanberegardedasanindextoevaluatethestart-upstrategy.Accordingtodesignedhydraulicretentiontimeandexpectedremovalefficiency,K′2isasignofstart-upsuccessofUASBreactor.Keywords:up-flowanaerobicsludgeblanket;start-upprocess;lowconcentrationwastewater;kineticparame-ter (up-flowanaerobicsludgeblan-ket,UASB),.,,UASB.UASB[1—3],,.,UASB3:;,、;. ,,,UASB,UASB*:2006-03-22;:2006-06-01. :(033113811). : (1979— ),,,wangjiemailbox@yahoo.com.cn.,UASB.1 1.1 UASB VanDerMeerHeertjesUASB[4]: (1),; (2),,,; (3),,. ,1UASB, VbdSbdt=Q0S0+QdbSd-QbdSb-qbXbVb(1) VddSddt=QkS0+QbdSb-QdbSd-QSd-qdXdVd(2)(1)(2) VbdSbdt+VddSddt=QS0-QSd-qbXbVb-qdXdVd(3)1 UASBFig.1 WorkingmodelofUASBreactor UASB,,.UASB,,,,Xd=Xb=X,Sb=Sd=Se,qd=qb.,dSb/dt=0,dSd/dt=0,(3) qbXVr=QS0-QSe(4) Echenfelder[5]46,,,,, dSdt=-K2XSe(5)(5)(4) S0-SeSeθ=K2X(6) UASB2:X,.[6](6)UASBK2.、,,,(6)K2,,K′2, K′2=K2X(7)(6) S0-Seθ=K′2Se(8)K′2K2,.(8) 1θ(S0Se-1)=K′2(9)η=1-SeS0(9) η(1-η)θ=K′2(10)(10),K′2ηθ,θ,K′2.,θ,Se,K′2. K2,K′2.,K2Arrhenius[5] K2(T)=K2(20)φ(T-20)t(11)(9)(10) 1θ(S0Se-1)φ(20-T)t=K′2(20)(12) η(1-η)θφ(20-T)t=K′2(20)(13)1.2 K′2 (7),K′2K2,1406 39 12 ,.,K2,K′2.(8),K′2.K′2,K′2. UASBUASB,[7].,(9),(K′2)2:θ,();,θ. ,,,,K′2,,K′2.,K′2,,K′2,,,K′2,,2.(a)K′2K2′(b)K′2K2′2 K′2Fig.2 PossibletrendofK′2 UASB,,,,,K′2,2. UASB,(10)K′2(K′2).,K′2,K′2K′2.(6)K′2,K′2K′2,2:①K′2K′2,2(a),,;②K′2K′2,,.,K′2.K′2,,K′2,,,2(b).2 K′2UASB UASB[8]UASB,K′2.2.1 UASB UASB3,6.28L,,COD400~600mg/L,NH4HCO3KH2PQ4、,NaHCO3pH.,51.18g/L,2L.3COD.1—;2—;3—;4—UASB;5—;6—;7—;8—.3 Fig.3 Schematicdiagramoftheexperimentalsystem1407 200612 :UASBK′2 (35℃),.3,(hydraulicretentiontime,HRT)28.3、69.346.5h.1,,15d;2,1,COD,;3,.COD4.4 UASBCODFig.4 InfluentandeffluentCODandremovalefficiencyinthelabscaleUASBstart-upprocess 40~50h,COD50mg/L,K′2.(9)K′25. 5,K′2,K′2,55dK′2,K′2,60d,. 0.5~1mm,61d,,K′2,K′2UASB.5 UASBK′2Fig.5 KineticparameterK′2inthelabscaleUASBstart-upprocess2.2 UASB UASB[7],、,[7]1.1 UASBTab.1 ParametersofpilotscaleUASBreactorstart-up/m/m/m3/m3/℃COD/(mgL-1)BOD/(mgL-1)pH1.55.28.05.315~23.2254.0~873.0260.0~347.07.0~8.01408 39 12 ,,UASB,.,“”,.7d,K′2,,K′2,6.1.5m3/h,COD800/0,(13)K′2.6,36dK′2K′2,.,(9)K′2(12)K′2.6 UASBK′2Fig.6 KineticparameterK′2inthepilotscaleUASBstart-upprocess3 K′2 (7),K2(),K′2.,(12)K′2,K′2.K′2,K′2.,K′2,78.7 UASBK′2Fig.7 CurveofK′2inthelabscaleUASBstart-upprocess8 UASBK′2Fig.8 CurveofK′2inthepilotscaleUASBstart-upprocess K′2k1=0.0028k2=0.0206,UASB.,K′2.,,,(PAC).(12)K′2(20),1409 200612 :UASBK′2,K′2(20).4 (1)UASBEchenfelderK′2UASB. (2)UASBK′2,K′2UASB,K′2K′2,.ArrheniusK′2,. (3)K′2,UASB,UASB.: K2———,1/(mgs); K′2———,1/s; K′2(20)———20℃K′2; K′2———,1/s; Q———,m3/s; Q0———,m3/s; Qk———,m3/s; Qbd———,m3/s; Qdb———,m3/s; Qg———,m3/s; Qgb———,m3/s; Qgd———,m3/s; qb———,1/s; qd———,1/s; S0———,mg/L; Sb———,mg/L; Sd———,mg/L; Se———,mg/L; Vr———,m3; Vb———,m3; Vd———,m3; Vpf———,m3; Xb———,mg/L; Xd———,mg/L; θ———,θ=Vr/Q(T); η———COD; φt———,1.03~1.15,1.09.:[1] RodríguezJA,PeñaMR,ManziV.Applicationofanin-novativemethodologytoimprovethestarting-upofUASBre-actorstreatingdomesticsewage[J].WaterScienceandTech-nology,2001,44(4):295—303.[2] PauloPL,JiangB,RoestK,eta.lStart-upofathermophi-licmethanol-fedUASBreactor:Changeinsludgecharacter-istics[J].WaterScienceandTechnology,2002,45(10):145—150.[3] ,,,.UASB[M].:,2000.WangKaijun,ZuoJian’e,GanHainan,eta.lTheTheoryandImplementationofUASBReactorConceptinChina[M].Beijing:ChinaEnvironmentalSciencePress,2000(inChi-nese).[4] VanDerMeerRR,HeertjesDM.Mathematicaldescriptionofanaerobictreatmentofwastewaterinupflowreactors[J].BiotechnologyandBioengineering,1983,25(11):2531—2556.[5] .[M].:,1993.GuXiasheng
本文标题:UASB反应器启动过程中的动力学参数K2王捷
链接地址:https://www.777doc.com/doc-6542162 .html