您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 反渗透纳滤过程的物理化学研究溶质脱除率方程和膜渗透通量方程姬朝青
57 3 Vol.57 No.3 20063 Journal of Chemical Industry and Engineering (China) March 2006、(Ⅰ)姬朝青,陈 浩(,313000):;;;:TQ028.8 :A:0438-1157(2006)03-0601-06PhysicalchemistrystudyonROandNFprocess(Ⅰ)EquationsofsoluterejectionandsolutionpermeationfluxonporousmembraneJIChaoqing,CHENHao(ZhejiangStoneEnvironmentEngineeringCo.Ltd,Huzhou313000,Zhejiang,China)Abstract:Theequationsofsoluterejectionandsolutionpermeationfluxofmulti-solutesolutiononporousmembranewerederivedonthebasisoftheadsorption-diffusionmodel.Thephysicalsignificanceofparametersintheequationswasdiscussed.Fromtheequationsofsoluterejectionandsolutionpermeationfluxonporousmembrane,thefollowingconclusionswerereached:whenthesolventwasadsorbedpreferentiallyonthemembranesurface,soluterejectioncoulddecreaseasthemembraneporosityincreased;whenthesolutewasadsorbedpreferentiallyonthemembranesurface,threecurvesofsoluterejectionvs.membraneporositywereobtained;soluterejectioncoulddecreaseasmembraneporousrateincreased;aminimumvaluewasshownonthecurveofsoluterejectionvs.membraneporousrate;aminvalueandamaxvaluewasshownonthecurveofsoluterejectionvs.membraneporosity.Thesolutionpermeationcoefficientdependedonthesolutediffusioncoefficientanddiffusionselectivityofsolutewithsolventinthemembranephase.Membranefoulingwascausedbythefactthatthesolutewasadsorbedpreferentiallyonthemembranesurface,leadingtoincreasedmembranesurfaceresistanceanddecreasedsolutionpermeationcoefficient.Keywords:reverseosmosis;nanofiltration;adsorption-diffusion;membranefouling 2005-01-10,2006-01-16.:(1963—),,. -、、Sourirajan-[1-3].-,,. Receiveddate:2005-01-10.Correspondingauthor:JIChaoqing.E-mail:Jichaoq-cn@sina.com ,-[4].,.-,,.1 1.1 、、,、、、.、,、,、,、.2、..,、,Langmuir.[4],nLiXfiL=KiXiL1-∑1-KiXiL(1)i.iFfi=-VidpLdL+RTXfi(L)dXfiLdL+ZiFdΧLdL(2)Ffw=-VwdpLdL-RT1-∑XfiLd∑Xfi(L)dL(3)iFsi=-VidpLdL+RTXi(L)dXiLdL+ZiFdΧLdL(4)Fsw=-VwdpLdL-RT1-∑XiLd∑XiLdL(5)[4]:,Jsv=usw=usiJfv=ufw=ufi.[4],iJfvi=-DimViRTdpLdL+1XfiLdXfiLdL+ZiFRTdΧLdL(6)Jfvw=-DwmVwRTdpLdL-11-∑XfiLd∑XfiLdL(7)Jsvi=-ViRTdpLdL+1XiLdXiLdL+ZiFRTdΧLdL(8)Jsvw=-VwRTdpLdL-11-∑XiLd∑XiLdL(9),i=1,…,n;Zii,,Zi,,Zi;i,Zi=0,i.L=0,Xi0=Xi2, Xfi0=KiXi21-∑1-KiXi2,p0=p1L=δ,Xiδ=Xi3, Xfiδ=KiXi31-∑1-KiXi3,pδ=p2i,Zi=Z+,j,Zj=-Z-,(6)i、jJfvi=-DimViRTdpLdL+1XfiLdXfiLdL+Z+FRTdΧLdL(10)Jfvj=-DjmVjRTdpLdL+1XfjLdXfjLdL-Z-FRTdΧLdL(11)(8)i、jJsvi=-DiViRTdpLdL+1ViLdXi(L)dL+Z+FRTdΧLdL(12)Jsvj=-DjVjRTdpLdL+1XjLdXjLdL-Z-FRTdΧLdL(13)(10)~(13)Nernst-Planck.(10)、(11)602 57 ijJfvij=-DijmVijRTdpLdL+dlnXfiLZ-Z++Z-XfjLZ+Z++Z-dL(14)(12)、(13)ijJsvij=-DijVijRTdpLdL+dlnXi(L)Z-Z++Z-XjLZ+Z++Z-dL(15) Dijm=(Z++Z-)DimDjmZ+Dim+Z-Djm;Dij=Z++Z-DiDjZ+Di+Z-Dj;Vij=ViZ-+VjZ+Z++Z-.i,Zi=0,(6)iJfvi=-DimViRTdpLdL+dlnXfiLdL(16)(8)iJsvi=-DiViRTdpLdL+dlnXiLdL(17)1.2 Jv=1-Jfv+Jsv(18)ijiXpij=XZ-Z++Z-fi3XZ+Z++Z-fj31-Jfv+XZ-Z++Z-i3XZ+Z++Z-j3JsvJv(19) Xpij=XZ-Z++Z-piXZ+Z++Z-pj.Xpi=Xfi31-Jfv+Xi3JsvJv(20)(14)~(17),Xfiδ=Xfi3=KiXi31-∑1-KiXi31-∑1-KiXi31-∑1-KiiXi2=exp-JsvδDij+JfvδDijm(21)1-∑1-KiXi31-∑1-KiiXi2=exp-JsvδDi+JfvδDim(22)(7)、(9),(7)、(9)、(21)、(22)(18)Jfvij=JvBij(23)Jfvi=JvBi(24)Jsvij=JvDijβijDijmBij(25)Jsvi=JvDiβiDimBi(26):βij=1-DijmDwm1-DijDw;βi=1-DimDwm1-DiDw;Bij=1+DijDijmβij-1;Bi=1+DiDimβi-1.(7)、(9),Xfiδ=Xfi3=KiXi31-∑1-KiXi3(21)、(22)、(18),Jv=AΔp-RTVwln1-∑Xfi31-∑Xi2-RTVwln1-∑1-KiXi2(27),A=VwDwmRTδ1+DwDwm-11-Dwβij-1DijmBijA=VwDwmRTδ1+DwDwm-11-Dwβi-1DimBi(23)、(25)(24)、(26)(14)、(15)(16)、(17),(19)(20)ijRij=1-Kij-Dijβij1-exp-Jvβij-1δDijmBij1-∑(1-Ki)Xi2DijmBij1-∑1-KiXi2Mijexp-JvδDijmBij+VijΔpRT(28) Kij=Kij+DijβijDijm-KijBij;Kij=KZ-Z++Z-iKZ+Z++Z-j.i603 3 :、(Ⅰ)Ri=1-Ki-Diβi1-exp-Jvβi-1δDimBi1-∑(1-Ki)Xi2DimBi1-∑1-KiXi2Miexp-JvδDimBi+ViΔpRT(29) Ki=Ki+DiβiDim-KiBi.AB,A+B-,Ka,α,ABX(1-α),(28)Ka=A+B-ABAB:XpAXpB=(1-RA+B-)2KaVw×X(1-α).(29)AB:XpAB=(1-RAB)(1-α)X.Ka=XpAXpBVwXpAB(1-RAB)=(1-RA+B-)2.XpA=XpB,ABRt=1-XpA+XpBX =RAB+α1-RAB-KaVw1-α1-RABX(30)(18)、(23)、(25)JvXiLZ-Z++Z-Xj(L)Z+Z++Z--XZ-Z++Z-i2XZ+Z++Z-j2Kij-Dijβij∑1-KiXi2DijmBij1-∑1-KiXi2=DijdXiLZ-Z++Z-Xj(L)Z+Z++Z-dL,ijMij=XZ-Z++Z-i2XZ+Z++Z-j2XZ-Z++Z-i1XZ+Z++Z-j1=expJvkij1+Kij-DijβijDijmBij∑1-KiXi21-∑1-KiXi2expJvkij-1(31)(18)、(24)、(26)Mi=expJvki1+Ki-Diβi∑(1-Ki)Xi2DimBi1-∑1-KiXi2expJvki-1(32)nijN..2 2.1 2.1.1 Kij()、Ki()和βij、βi的物理含义 (25)、(26):βij、βi、.(28)、(29):Kij()、Ki()、.Kij1Ki1,,Kij()1,Ki()1,Kij()、Ki().Ki1,,Ki()1,.2.1.2 多孔膜的分离机理 (28)、(29),、,、,、,.、.-、,,.、,、.Sourirajan[3]-.2.1.3 溶质脱除率随膜孔隙率的变化规律 ,,M=1,,(27)(29).(29)604 57 dRid=DiβiDimB2iKi1-Jvδ1-1-DimDiβi1-BiJvdJvdDimBi-1+JvδβiDiβiDim-11-BiJvDiβiDim-1dJvdDimBiexp-Jvβi-1δDimBiexp-JvδDimBi,Ki1,,(22)、(24)、(26)exp-Jvβi-1δDimBi1,:dRid0,.,Ki1,dRid=0,e2Ri20,;e2Ri20,;e1e2,e12Ri20,e22Ri20,.CA()[3].2.1.4 弱电解质的溶质脱除率和电离度的关系 (30),..(30)CA[5].2.2 2.2.1 对溶液体积通量方程的讨论 (27),A、,A.A0=VwDwmRTδ×1+DwDwm-1.2.2.2 膜污染机理的讨论 (27):,,Ki1,,,,RTVwln1-∑1-KiXi2,..(27)(29):①,,;②,,.(30)、(27):,pH,,,.3 (27)~(29):.(1),,.(2),、,.、..4 ,,、..605 3 :、(Ⅰ). A,A0———,m3m-2s-1MPa-1Bij,Bi———Di,Dj,Dij———i、jij,m2s-1Dim,Djm,Dijm———i、jij,m2s-1Dw,Dwm———,m2s-1F———Faraday,Cmol-1Fsi,Fsw,Ffi,Ffw———i、,NJfv,Jsv,Jv———、,m3m-2s-1Ka———,m3mol-1
本文标题:反渗透纳滤过程的物理化学研究溶质脱除率方程和膜渗透通量方程姬朝青
链接地址:https://www.777doc.com/doc-6558919 .html