您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 上海市2019届初三数学一模提升题汇编第25题(压轴题)(word版含答案)
1FEACBDFEACBD2019届一模提升题汇编第25题(压轴题)【2019届一模徐汇】25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:在梯形ABCD中,AD//BC,AC=BC=10,54cosACB,点E在对角线AC上(不与点A、C重合),EDCACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DFBC时,求AD的长;(2)设EC的长为y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.【25.解:(1)过A作AH⊥BC,垂足为H,∵=CHAHCACBAC在Rt中,cos,且4=,105ACBACcos,∴8CH.∵222AHCAHCHAC在Rt中,,∴6AH……………………………(1分)(第25题图1)(第25题图)2∴34AHCACB在Rt中,tan=,∵AD∥,,BCDFBCAHBC且,∴90AHFHFDDFH,∴四边形AHFD是矩形,∴6DFAH∵,CFDFCDECEDCACBDF在Rt中,tan=且…………………………(1分)∴39tan,42CFACBCFDF得:……………………………………………(1分)∴97822ADHF……………………………………………………………(1分)(2)∵AD∥BC,∴DACACB.∵EDCACB,∴EDCDAC.∵ACDACD,∴CADV∽CDEV………………………………………(1分)∴CACDCDCE,∵10,ACECy,∴210CDCACEy…………………………………(1分)∵222226(8)DFCCDDFFCx在Rt中,∴221610010(8)36,10xxyxy即(016x且10)x……………(2分)(3)由EDCACB,EFCEFC得:FCE∽FDC,又AD∥BC有FCE∽DAE,∴DAE∽FDC∴当FDC是等腰三角形时,DAE也是等腰三角形………………………(1分)∴1,DADE当时不存在;………………………………………………………(1分)2,10ADAExy当时得:120(),6xx解得:舍……………………………………………………………(2分)33,sinAMEAEDAMEMAEACBAE当时在Rt中由=sin12143920(),1054xxxy得:,解得:舍………………………………………(2分)∴综上所述,当DFC是等腰三角形时,AD的长是3964或.】【2019届一模浦东】25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)将大小两把含30°角的直角三角尺按如图10-1位置摆放,即大小直角三角尺的直角顶点C重合,小三角尺的顶点D、E分别在大三角尺的直角边AC、BC上,此时小三角尺的斜边DE恰好经过大三角尺的重心G.已知∠A=∠CDE=30°,AB=12.(1)求小三角尺的直角边CD的长;(2)将小三角尺绕点C逆时针旋转,当点D第一次落在大三角尺的边AB上时(如图10-2),求点B、E之间的距离;(3)在小三角尺绕点C旋转的过程中,当直线DE经过点A时,求∠BAE的正弦值.【25、(1)43CD;(2)337;(3)2236或2236】G(图10-1)(图10-2)EDCABDCBAE4【2019届一模杨浦】25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)已知:梯形ABCD中,AD//BC,AB⊥BC,AD=3,AB=6,DF⊥DC分别交射线AB、射线CB于点E、F.(1)当点E为边AB的中点时(如图1),求BC的长;(2)当点E在边AB上时(如图2),联结CE,试问:∠DCE的大小是否确定?若确定,请求出∠DCE的正切值;若不确定,则设AE=x,∠DCE的正切值为y,请求出y关于x的函数解析式,并写出定义域;(3)当△AEF的面积为3时,求△DCE的面积.【25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)解:(1)∵AD//BC,∴DEAEADEFEBBF==.∵E为AB中点,∴AE=BE.∴AD=BF,DE=EF.∵AD=3,AB=6,∴BF=3,BE=3.∴BF=BE.∵AB⊥BC,∴∠F=45°且EF=32.···················(1分)∴DF=2EF=62.····························(1分)∵DF⊥DC,∠F=45°,∴CF=12.····················(1分)∴BC=1239CFBF-=-=.······················(1分)ABCDEF(图1)(第25题图)ABCDEF(图2)5(2)∠DCE的大小确定,1tan2DCE?.·················(1分)作CH⊥AD交AD的延长线于点H,∴∠HCD+∠HDC=90°.∵DF⊥DC,∴∠ADE+∠HDC=90°.∴∠HCD=∠ADE.又∵AB⊥AD,∴∠A=∠CHD.∴△AED∽△HDC.·············(2分)∴DEADDCCH=.·····························(1分)∵AB⊥AD,CH⊥AD,AD//BC,∴CH=AB=6.∵AD=3,CH=6,∴12DEDC=.即1tan2DCE?.··············(1分)(3)当点E在边AB上,设AE=x,∵AD//BC,∴ADAEBFEB=,即36xBFx=-.∴183xBFx-=.∵△AEF的面积为3,∴118332xxx-鬃=.∴4x=.·······························(1分)∵AD=3,AB⊥AD,∴DE=5.∵12DEDC=,∴DC=10.∵DF⊥DC,∴1510252DCES=创=V.··················(1分)当点E在边AB延长线上,设AE=y,∵AD//BC,∴ADAEBFEB=,即36yBFy=-.∴318yBFy-=.∵△AEF的面积为3,∴131832yyy-鬃=.∴8y=.·············(1分)∵AD=3,AB⊥AD,∴DE=73.联结CE,作CH⊥AD交AD的延长线于点H,同(1)可得12DEDC=.·····(1分)ABCDEF6∴DC=273∵DF⊥DC,∴173273732DCES=创=V.················(1分)综上,当△AEF的面积为3时,△DCE的面积为25或73.】【2019届一模普陀】25.(本题满分14分)如图11,点O在线段AB上,22AOOBa,60BOP,点C是射线OP上的一个动点.(1)如图11①,当90ACB,2OC,求a的值;(2)如图11②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求:AQOQ的值.【25.解:ABCPOABCPO图11①图11②7(1)过点C作CHAB,H为垂足.··················(1分)∴90CHOCHB.在Rt△COH中,60COB,2OC.∴1OH,3CH.·······················(1分)∵22AOOBa,∴21AHa,1BHa.∵90ACB,∴90ACHHCB.∵CHAB,∴90ACHA.∴AHCB.∵90CHABHC,∴△ACH∽△CBH.·······················(1分)∴AHCHCHBH.∴2CHAHBH.∴2(3)(21)(1)aa.·····················(1分)∴1334a,1334a(不合题意,舍去).∴1334a.··························(1分)(2)过点C作CHAB,H为垂足.设OCm.在Rt△COH中,60COB,OCm.∴12OHm,32CHm.·····················(2分)8在Rt△ACH中,90CHA,∴222ACAHCH.∴22213(3)(2)()22aamm.···················(2分)得6maa,6maa(不合题意,舍去).即6OCaa.·························(1分)(3)延长QA、CO交于点E.∵AQ//BC,∴EOCB.∵COAAOQQOC,COAOCBB,QOCB,∴AOQOCB.∵QOAE.又∵QQ,∴△QOA∽△QEO.················(1分)∴AQAOOQOE.···························(1分)∵AQ//BC,∴AOEOOBOC.∴AOOBEOOC.∴AQOBOQOC.·······(1分)由上题可得(16)OCOB,得165OBOC.即165AQOQ.·························(1分)】【2019届一模奉贤】25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)9如图11,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,26ABCD,E是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC交于点G.(1)当点G与点C重合时,求:CEBE的值;(2)当点G在边CD上时,设CEm,求△DFG的面积;(用含m的代数式表示)(3)当AFD∽ADG时,求∠DAG的余弦值.【25.解:(1)∵CD∥EF,DF∥CE,∴四边形DFEC是平行四边形.·····················(1分)∴EF=DC.······························(1分)∵26ABCD,∴3CDEF.∵AB∥CD,∴AB∥EF.∵点G与点C重合,∴12EFCEABBC.∴:1CEBE=.···········(2分)(2)过点C作CQ∥AG,交AB于点Q,交EF于点P.过点C作CM⊥AB,交AB于点M,交EF于点N.在Rt△BCM中,90CMB??,4CMAD,3BMABCD,∴5BC.∵AB∥EF∥CD,∴GC=PF=AQ.∴EPCEBQBC.图11ABCDFEG备用图ABCD10又3EF,∴365GCmCG.∴1565mGCm.···························(2分)∴35mDGDCGCm.·······················(1分)∵NE∥MB,∴CNCECMBC.又4CMAD,∴45CNm,45mCN.················(1分)∴2113462254255DFGmmmSDGCNmm.··············(1分)(3)当AFD∽ADG时,∵∠DAB=90°,∴ADG是直角三角形,∴AFD也是直角三角形.∵90DAF泄?,90FDA泄?,∴90DFA??.············(1分)∵90FADADF???,90FDCADF???,∴FADFDC??.∵AB∥EF,∴BCEF??.∵四边形DFEC是平行四边形,∴FDCCEF??.∴BFDCFAD???.·······················(1分)在Rt△BCM中,90CMB??,3BMABCD,5BC,∴3cos5BMBBC.··························(2分)∴3cos5DAG.···························(1分)
本文标题:上海市2019届初三数学一模提升题汇编第25题(压轴题)(word版含答案)
链接地址:https://www.777doc.com/doc-6575083 .html