您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 综合/其它 > MBA统计学07相关和回归分析
统计学─从数据到结论第七章相关和回归分析§7.1问题的提出对于现实世界,不仅要知其然,而且要知其所以然。顾客对商品和服务的反映对于企业是至关重要的,但是仅仅有满意顾客的比例是不够的;商家希望了解什么是影响顾客观点的因素,及这些因素如何起作用。类似地,医疗卫生部门不能仅仅知道某流行病的发病率,而且想知道什么变量影响发病率,以及如何影响。§7.1问题的提出发现变量之间的统计关系,并且用此规律来帮助我们进行决策才是统计实践的最终目的。一般来说,统计可以根据目前所拥有的信息(数据)来建立人们所关心的变量和其他有关变量的关系。这种关系一般称为模型(model)。§7.1问题的提出假如用Y表示感兴趣的变量,用X表示其他可能与Y有关的变量(X也可能是若干变量组成的向量)。则所需要的是建立一个函数关系Y=f(X)。这里Y称为因变量或响应变量(dependentvariable,responsevariable),而X称为自变量,也称为解释变量或协变量(independentvariable,explanatoryvariable,covariate)。建立这种关系的过程就叫做回归(regression)。§7.1问题的提出一旦建立了回归模型,除了对变量的关系有了进一步的定量理解之外,还可以利用该模型(函数)通过自变量对因变量做预测(prediction)。这里所说的预测,是用已知的自变量的值通过模型对未知的因变量值进行估计;它并不一定涉及时间先后。先看几个后面还要讨论的数值例子。§7.1问题的提出例7.1有50个从初中升到高中的学生。为了比较初三的成绩是否和高中的成绩相关,得到了他们在初三和高一的各科平均成绩(数据在highschool.txt)。这两个成绩的散点图展示在图7.1中。50名同学初三和高一成绩的散点图初三成绩110100908070605040高一成绩100908070605040有个上升趋势;即初三时成绩相对较高的学生,在高一时的成绩也较高。但对于具体个人来说,大约有一半的学生的高一平均成绩比初三时下降,而另一半没有变化或有进步§7.1问题的提出目前的问题是怎么判断这两个变量是否相关、如何相关及如何度量相关?能否以初三成绩为自变量,高一成绩为因变量来建立一个回归模型以描述这样的关系,或用于预测。§7.1问题的提出该数据中,除了初三和高一的成绩之外,还有一个定性变量(没有出现在上面的散点图中)。它是学生在高一时的家庭收入状况;它有三个水平:低、中、高,分别在数据中用1、2、3表示。122711N=家庭收入321高一成绩110100908070605040303925122711N=家庭收入321高一成绩与初三成绩之差3020100-10-20-30为研究家庭收入情况对学生成绩变化的影响,下面点出两个盒形图,左边一个是不同收入群体的高一成绩的盒形图,右边一个是不同收入群体的高一和初三成绩之差的盒形图。•可以看出收入高低对高一成绩稍有影响,但不如收入对成绩的变化(高一和初三成绩之差)的影响那么明显。§7.1问题的提出到底学生在高一的家庭收入对成绩有影响吗?是什么样的影响?是否可以取初三成绩(这是定量变量)或(和)家庭收入(定性变量)为自变量,而取高一成绩为因变量,来建立一个描述这些变量之间关系的回归模型呢?§7.1问题的提出例7.2这是200个不同年龄和性别的人对某项服务产品的认可的数据(logi.txt)。这里年龄是连续变量,性别是有男和女(分别用1和0表示)两个水平的定性变量,而变量观点则为包含认可(用1表示)和不认可(用0表示)两个水平的定性变量(见下页数据)。想要知道的是年龄和性别对观点有没有影响,有什么样的影响,以及能否用统计模型表示出这个关系。年龄和观点的散点图年龄8070605040302010观点(0为认可,1为不认可)1.21.0.8.6.4.20.0-.2性别(0:女,1:男)1.00.00Count120100806040200OPINION.001.00年龄和观点的散点图(左)和性别与观点的条形图;§7.2定量变量的相关如果两个定量变量没有关系,就谈不上建立模型或进行回归。但怎样才能发现两个变量有没有关系呢?最简单的直观办法就是画出它们的散点图。下面是四组数据的散点图;每一组数据表示了两个变量x和y的样本。-3-2-1012-2-1012(a)xy-2-1012-2-1012(b)xy-2-1012-2-1012(c)xy-3-2-1012302468(d)xy不相关正线性相关负线性相关相关但非线性相关§7.2定量变量的相关但如何在数量上描述相关呢?下面引进几种对相关程度的度量。Pearson相关系数(Pearson’scorrelationcoefficient)又叫相关系数或线性相关系数。它一般用字母r表示。它是由两个变量的样本取值得到,这是一个描述线性相关强度的量,取值于-1和1之间。当两个变量有很强的线性相关时,相关系数接近于1(正相关)或-1(负相关),而当两个变量不那么线性相关时,相关系数就接近0。§7.2定量变量的相关Kendallt相关系数(Kendall’st)这里的度量原理是把所有的样本点配对(如果每一个点由x和y组成的坐标(x,y)代表,一对点就是诸如(x1,y1)和(x2,y2)的点对),然后看每一对中的x和y的观测值是否同时增加(或减少)。比如由点对(x1,y1)和(x2,y2),可以算出乘积(x2-x1)(y2-y1)是否大于0;如果大于0,则说明x和y同时增长或同时下降,称这两点协同(concordant);否则就是不协同。如果样本中协同的点数目多,两个变量就更加相关一些;如果样本中不协同(discordant)的点数目多,两个变量就不很相关。§7.2定量变量的相关Spearman秩相关系数(Spearmanrankcorrelationcoefficient或Spearman’sr)它和Pearson相关系数定义有些类似,只不过在定义中把点的坐标换成各自样本的秩(即样本点大小的“座次”)。Spearman相关系数也是取值在-1和1之间,也有类似的解释。通过它也可以进行不依赖于总体分布的非参数检验。§7.2定量变量的相关人们可能会问,上面的三种对相关的度量都是在其值接近1或-1时相关,而接近于0时不相关。到底如何才能够称为“接近”呢?这很难一概而论。但在计算机输出中都有和这些相关度量相应的检验和p-值;因此可以根据这些结果来判断是否相关(见下面例7.1的继续)。§7.2定量变量的相关例7.1(继续)得到初三和高一成绩的Pearson相关系数,Kendallt相关系数和Spearman秩相关系数分别为0.795,0.595和0.758。这三个统计量相关的检验(零假设均为不相关)全部显著,p-值都是0.000。注意这种0.000的表示并不表示这些p-值恰好等于零,只是小数点前三位是0而已。§7.3定量变量的线性回归分析对例7.1中的两个变量的数据进行线性回归,就是要找到一条直线来适当地代表图1中的那些点的趋势。首先需要确定选择这条直线的标准。这里介绍最小二乘回归(leastsquaresregression)。古汉语“二乘”是平方的意思。这就是寻找一条直线,使得所有点到该直线的豎直距离的平方和最小。用数据寻找一条直线的过程也叫做拟合(fit)一条直线。§7.3定量变量的线性回归分析例7.1(继续)根据计算,找到初三成绩和高一成绩的回归直线。计算机输出给出来截距(Constant)26.444和斜率(变量j3的系数)0.651。Coefficientsa26.4445.3964.901.000.651.072.7959.089.000(Constant)j3Model1BStd.ErrorUnstandardizedCoefficientsBetaStandardizedCoefficientstSig.DependentVariable:s1a.405060708090100405060708090100J3S126.440.65yx截距=26.444;斜率=0.651§7.3定量变量的线性回归分析这个直线实际上是对所假设的下面线性回归模型的估计(这里的e是随机误差):01yxe我们得到的截距和斜率(26.444和0.651)是对0和1的估计。§7.3定量变量的线性回归分析由于不同的样本产生不同的估计,所以估计量是个随机变量,它们也有分布,也可以用由他们构造检验统计量来检验0和1是不是显著。拿回归主要关心的来说,假设检验问题是0111:0:0HH计算机输出也给出了这个检验:t检验统计量为9.089,而p-值为0.000。§7.3定量变量的线性回归分析除了对的检验之外,还有一个说明自变量解释因变量变化百分比的度量,叫做决定系数(coefficientofdetermination,也叫测定系数或可决系数),用R2表示。对于例1,R2=0.632;这说明这里的自变量可以大约解释63%的因变量的变化。R2越接近1,回归就越成功。由于R2有当变量数目增加而增大的缺点,人们对其进行修改;有一修正的R2(adjustedRsquare)。§7.3定量变量的线性回归分析此外,计算机还计算了一个在零假设下有F分布的检验统计量,它是用来检验回归拟合好坏的(零假设是因变量和自变量没有关系)。ModelSummary.795a.632.6257.22091Model1RRSquareAdjustedRSquareStd.ErroroftheEstimatePredictors:(Constant),j3a.ANOVAb4307.20614307.20682.606.000a2502.7944852.1426810.00049RegressionResidualTotalModel1SumofSquaresdfMeanSquareFSig.Predictors:(Constant),j3a.DependentVariable:s1b.§7.3定量变量的线性回归分析和刚才简单的回归模型类似,一般的有k个(定量)自变量x1,x2…,xk的对因变量y的线性回归模型为(称为多元回归)01122kkyxxxe这里0,1,…,k称为回归系数。对计算机来说,计算多个自变量的回归和计算一个自变量的情况类似,计算机也会自动输出相应的检验结果。§7.3定量变量的线性回归分析并且用数据来拟合所选的一个模型时,并不一定所有的变量都显著(并不一定所有的系数都有意义)。软件有一种一边回归,一边检验的所谓逐步回归(stepwiseregression)方法。该方法或者从只有常数项开始,逐个地把显著的变量加入;或者从包含所有变量的模型开始,逐步把不显著的变量减去。注意不同方向逐步回归的结果也不一定相同。§7.4自变量中有定性变量的回归在例7.1的数据中,还有一个自变量是收入,但它是定性变量,以虚拟变量或哑元(dummyvariable)的方式出现。(这里收入的“低”,“中”,“高”,用1,2,3来代表)。如果要用这种哑元进行7.2节的回归就没有道理了。可以用下面模型描述:011012013,1,2,3yxxxeee代表家庭收入的哑元=时,=代表家庭收入的哑元=时,=代表家庭收入的哑元=时。§7.4自变量中有定性变量的回归注意,哑元的各个参数1,2,3本身只有相对意义,无法三个都估计,只能够在有约束条件下才能够得到估计。约束条件可以有很多选择,一种默认的条件是把一个参数设为0,比如3=0,这样和它有相对意义的1和2就可以估计出来了。对于例7.1得到28.7080.68811.066,28.7080.6884679,28.7080.688,yxyxyx(低收入家庭),.(中等收入家庭),(高收入家庭)。Parame
本文标题:MBA统计学07相关和回归分析
链接地址:https://www.777doc.com/doc-661697 .html